
1617: Disk Co-processor
Card

Version 1.423
August, 1993

Applix 1616 microcomputer project
Applix pty ltd

1617 Disk Co-processor Card

Even though Applix has tested the software and reviewed the documentation, Applix makes no
warranty or representation, either express or implied, with respect to software, its quality,
performance, merchantability, or fitness for a particular purpose. As a result this software is
sold "as is," and you the purchaser are assuming the entire risk as to its quality and performance.

Inno eventwill Applix be liable fordirect, indirect, special, incidental, or consequential damages
resulting from any defect in the software or its documentation.

Original version disk code by Andrew Morton.
Original version of this manual was written by Andrew Morton.
Additional introductory and tutorial material by Eric Lindsay, who edits and fancy prints the
manuals.

Comments about this manual or the software it describes should be sent to:

Applix Pty Limited
Lot 1, Kent Street,
Yerrinbool, 2575
N.S.W. Australia
(48) 839 372

 Copyright 1986, 1988, 1990 Applix Pty Limited. All Rights Reserved.
Revised material Copyright 1988, 1992 Eric Lindsay.

ISBN 0 947341 xx x

MC68000 is a trademark of Motorola Inc.

1
Introduction

The Applix 1616 Revision B motherboard contains a cassette port, but does not support any
faster means of storing programs and data on magnetic media. Expansion of the system is by
means of cards that plug into one of the four Applix expansion bus slots.

The principal function of the disk controller card (SSDCC) is to allow the use of floppy disk
drives on your Applix 1616 (or similar!) computer. Your SSDCC controller comes complete
with all components and programs required to control two floppy drives (drives are available
separately from Applix and other suppliers).

Number of drives
The card supports one or two 3.5" or 5.25" floppy disk drives, giving you a formatted capacity
of 800K each. We believe this should be sufficient for most Applix applications. Up to two
drives are supported by the Version 1.4 EPROM in the Applix SSDCC.

With external modifications, and appropriate software programs (Greyham Stoney’s disk cache,
on Applix Shareware Disk # 7), the controller can support as many as 16 disk drives, but this
is not a standard Applix configuration. An appendix to this manual, containing Greyham’s
extensive "read.me" notes, is available via the Users Group or Applix.

Summary of features
The SSDCC is much more than ‘just a disk controller’. The card is a complete computer system,
whichcontains itsown8MHzZ80 microprocessor,memory,anoptionalSCSIhard disk interface
and an additional two serial ports. Its features include:

Onboard Z80H CPU running at 8MHz
8K to 32K of EPROM
8K to 64K of RAM
WD1772 floppy disk controller

and allows for...

SCSI hard disk interface
2 additional serial ports (under Z80 control) using Z8530 SCC

Optional kits
There are a variety of optional add-on components and software available for the controller card.
Ask for full details on those described below.

• Hard disk kit includes an NCR5380 SCSI hard disk controller chip, and a revised
EPROM (Version 2.n) containing Mark Harvey’s SCSI drivers, plus various hard
disk programs. An extensive appendix to this manual is supplied with the hard disk
update kit. Appropriate cables and SCSI hard disks can be obtained from Applix and
other suppliers. Approximate cost $99, cables $25, SCSI drives $600 and up,
depending upon capacity. An additional power supply may be required.

 Introduction Disk Co-processor 1-1

• CP/M expansion includes a revised ZPAL chip, called CZPAL, 64k of static RAM
(to replace the normal 8 k), and the ZRDOS and ZCPR3 software, as ported by Conal
Walsh. This is an expanded and improved superset of CP/M 2.2. A number of utilities
are provided with this conversion, and it includes the ability to read Microbee CP/M
disks. Many traditional CP/M programs have been converted, including WordStar,
and dBase II. Cost $150, includes 64k RAM, and all licensed software.

• Cache and special format software for floppy disks, by Greyham Stoney, is available
as ‘freeware’. This assists you read, write and format disks for any format that can
be produced by the WD1772.

A fast disk copy is included, together with special programs to read, write, convert
and format MS-DOS disks. Many additional, detailed, error messages are provided.
This frequently updated software, which is also available in EPROM, is indicated by
Version A.4x etc. Extensive and very informative documentation is available on the
disk. A printed version, similar to this manual, has been produced. Cost of shareware
disk $5.

Manual contents
Thismanual isnot required fornormaloperation of theApplix 1616,as high leveldiskcommands
are always available within the 1616/OS operating system. The manual is provided as back-
ground information for software experimenters wishing to explore the system at a reasonably
fundamental level. It also includes complete construction and testing details, for those building
the controller from a kit, or wishing to do repairs.

Sections 2 and 3 of this manual provide, as background reading, a detailed introduction to the
low level concepts underlying disk controllers and drives. It also explains in some detail the
electronic design of the SSDCC board.

Although we do not encourage you to write your own drivers, there is sufficient information for
the experimenter to commence writing low level drivers (provided they know Z80 code, and
have access to a Z80 assembler).

Those intending to experiment will also need to obtain copies of the manufacturer’s notes on
the WD1772, the disk drive, the NCR5380 SCSI controller, and a SCSI drive manual. These
manuals can be made available (at cost) via the Applix Users group, but you should be warned
that they are not light reading, and occupy about 500 pages!

Kit builders will find notes on construction techniques in Section 4, and a full parts list in Section
5. The actual construction and testing of the controller are covered step by step in Sections 6
and 7. The pin outs of all connectors are listed in Appendix A.

A number of block related commands for direct operation of the controller from the 1616 are
described in Section 8, on SSDCC software. These commands allow most of the WD1772 and
NCR5380 facilities to be used, without the need for writing low level code.

A brief description of the disk, block and directory structure is provided in Section 9, on disk
organisation. This should provide sufficient information for those writing file recovery, file
display, disk editor, and other related utilities.

Descriptions of the hard disk hardware and commands are provided with the hard disk upgrade
kit. At present, there are no additional notes on the serial ports.

1-2 Disk Co-processor Introduction

2
SSDCC Design Overview

The major sections of the SSDCC circuit are

• Z80 processor and address decode circuit

• the Z80’s memory

• 1616 bus interface

• floppy disk interface

• SCSI hard disk interface

• dual serial I/O channels

Z80 introduction
The Z80 has separate memory and I/O address spaces. It also has a separate set of bus signals
to control these separate memory and I/O spaces, unlike the 1616’s MC68000 microprocessor
which has a memory space only.

Obviously, the EPROM and RAM are mapped into the Z80’s memory address space. As the
Z80 has only 16 address lines, only 64k of memory can be addressed, so when two RAM chips
(each of which could contain up to 32k) are used, bank selection is provided.

Access to the 1616, to the disk drive select lines, the floppy disk controller chip, SCSI controller,
and the serial ports, are all by means of the Z80’s I/O address space.

In normal operation with Applix software, the Z80 stack starts in memory at $7800, and builds
down, while local variable use starts at $6000 and builds up. The $800 bytes from $7800 to
$7fff are usually available for user programs.

If you intend to use the Z80 directly, rather than indirectly by means of the routines provided,
you will need to know how to program a Z80 in assembler. Information on Z80 assembler is
not provided in this (or any other) Applix manual, however many computer shops sell intro-
ductory manuals.

Note: Signals beginning with a ‘/’ (eg /DTACK) are active low. A signal is referred to as
being ‘asserted’ when it is in its active state. For an active low signal this is the low state. A
signal in its inactive state is referred to as being ‘negated’.

Note: The Z80 convention is to use the letterH after hexadecimal numbers (rather than
using a $ sign before the number). Most Z80 hexadecimal numbers that would otherwise start
with a letter have a 0 in front. I have tried to alter this manual to suit the Z80 conventions, when
referring to Z80 memory and I/O addresses (don’t blame me, it wasn’t my idea, it is merely the
convention in the Z80 world!)

Z80 address decode
The Z80 decode PAL (U8, ZPAL) and the 3 to 8 decoder (U13, 74LS138) together perform the
memory and I/O enabling.

The signals ‘MAP’ and ‘BANK’, which go into the Z80 PAL, are provided for selecting a
differentmemory map, and for overlaying memory banks. The Z80’s memory map is as follows:

 SSDCC Design Overview Disk Co-processor 2-1

0000H-5FFFH ROM (only 24k of the potential 32k available)

6000H-7FFFH Common RAM0 bank

8000H-0FFFFH Switching RAM bank

So that the Z80 may access all of the possible 64 kbytes of RAM whilst still reading from the
ROM, the RAM is split into two 32k halves. Only one of these halves may appear in the top
32k of address space at a time.

When the ‘BANK’ signal is low the data in RAM0 (U1) is accessible in this address range;
when ‘BANK’ is high the data in RAM1 (U2) is accessible. If 8 kbyte RAM chips are loaded
in the board, then only the first 8 kbytes of this 32k address space are useful. 8 kbytes of RAM0
is always accessible in the common bank, and is repeated at 0E000H to 0FFFFH.

The ‘MAP’ signal is not used at present, in normal mode, but is used by the CP/M convention.

Z80’s I/O address map

Address Name Function

00H PORT Read only input port.

08H LATCH Read/write disk select latch.

10H ZINTS Write: interrupt the 1616.
10H ZCLRINT Read: clear pending Z80 interrupt.

18H SDATA Read/write 1616 communications port.

20H SCSIBASE SCSI controller base address (20H-3FH).

40H FDCBASE Floppy disk controller base address (40H-5FH).

60H SCCBASE Serial communications controller base address (60H-7FH).

Input port
The input port (U22, 74LS244) enables a Z80 program to determine the level of the following
signals:

Bit 0 The ‘SCOMMAND’ signal is set when the byte from the 1616 which is currently
held in the receive latch is a command. This means that the MC68000 put the data
there by writing to its ‘SCOMMAND’ output port.

Bit 1 The ‘ZRXRDY’ signal is high if there is a data or command byte from the MC68000
within the receive register.

Bit 2 The ‘ZTXRDY’ signal ishigh if the1616 has read the previousbyte out of the transmit
register.

Bit 3 This signal determines whether the Z80 is to enter its normal operating mode or to
execute its diagnostic test mode.

2-2 Disk Co-processor SSDCC Design Overview

Drive select latch
Various disk functions are controlled by writing to U16, a 74LS273 latch, located at 08H in the
Z80 I/O space. This latch controls which drive is selected, which side of the disk is selected,
controls the /INUSE and /EJECT lines, the /MOTORON line (and also the LED on the card).
It also produces the BANK and MAP signals, all of which are mapped as follows:

Bit 7 80H MAP
Bit 6 40H BANK
Bit 5 20H Side select
Bit 4 10H Motor on, and LED
Bit 3 8H Drive select 1
Bit 2 4H Drive select 0
Bit 1 2H /EJECT line
Bit 0 1H /INUSE line

If the Z80 reads from the same I/O location ($08, at U15, 74LS244), you can obtain the status
of the disk drive /DISK CHANGE and /READY lines.

Bit 1 2H /DISK CHANGE
Bit 0 1H /READY

Interrupts
Although provision is made in the hardware (by means of a jumper block) for the use of the Z80
interrupts, they are not used by floppy disk (Version 1.4) software. There is capability for the
Z80 and the 1616 to interrupt each other. Interrupts are not used by the software in the SSDCC
at present. The interrupt mechanism is as follows:

Z80 interrupted by 1616

The 1616 writes a byte with a zero in its least significant bit (LSB) to the SINTZ port; this causes
pin 9 of U14 (74LS74) to go low. This signal (available on pin 2 of the jumper block) should
be connected to the Z80’s /INT or /NMI signal on the interrupt strapping block. When the Z80
accepts the interrupt it should clear the interrupt signal by reading from its ZCLRINT address.

1616 interrupted by Z80

The Z80 writes a byte with zero in its LSB to the ZINTS port. This sends pin 5 of U14 (74LS74)
low, holding the 1616 bus /EIRQ1 signal low. The /EIRQ1 signal must be connected to one of
the 1616’s interrupt pins on the ‘INT LEVEL’ strapping block on the 1616 main board. When
the 1616 interrupt is taken, the 1616 must clear the interrupt signal from within the interrupt
service routine by reading from the SCLRINT port.

SCSI interrupt

Interrupts from the SCSI to Z80 are used by some versions of the SCSI hard disk software. The
non-maskable interrupt (NMI) is used, and links 3 (NMI) and 5 (SCSIRQ) must have a shorting
block inserted for these version. The versions in question have anodd number. That is, version
2.1, version2.3, etc. Version 2.0, 2.2 of the hard disksoftware doesnot require theNMI interrupt.

The Z80 is normally set to interrupt mode 1, and should be returned to this mode if your program
changes it. The maskable interrupt has a jump vector set to $7800, and user written programs
can commence here. At reset, address 7800H is set to a warm start.

Wait states
The Z80 may be forced to insert extra clock cycles into a memory or I/O transaction by forcing
it into a ‘wait state’. This is done when pin 13 of the ZPAL goes low; the arrangement of the

 SSDCC Design Overview Disk Co-processor 2-3

flip-flop U6 (74LS74) causes the Z80 to insert a single wait state into a memory or I/O access.
Thus, the programming of the PAL determines which addresses receive wait states, and which
do not.

At present all I/O transactions and ROM reads have a wait state. RAM reads and writes proceed
at full speed.

About 16L8 PALs
A 16L8 PAL, used in the SSDCC, is an array of simple logic gates whose output is immediately
available (or non-registered). The non-registered PAL (16L8) is used simply to detect certain
combinations on its input pins, which makes it ideal for address decoding applications.

They are unlike the 16R8 PALs used on the 1616’s main board. The ‘R’ stands for registered,
which means that the 1616 PALs have latched outputs, so that changes in the registered PAL’s
output state can only occur on the rising edge of the PAL’s clock pin. A registered PAL is used
in a situation where its outputs have to be synchronised, or where memory about the PAL’s
previous states is needed.

Interface to 1616
The 1616 address decoding, /DTACK signal generation, status port multiplexing and hand-
shaking control is done by the U24, (SPAL), the other 16L8 PAL on the SSDCC.

With this PAL we are using the PAL’s ability to turn its outputs into a high-impedance (or
floating, or tri-state) condition under certain input signal combinations. The /DTACK output
pin is normally floating; it is actively driven only during MC68000 accesses. Similarly the D7
output pin directly drives the1616 data bus and is floated until the MC68000 reads theSRXRDY,
STXRDY or ZCOMMAND signals. When this happens the PAL routes the selected signal onto
the D7 output and enables this pin to drive the bus.

Communication with the Z80
A mechanism is provided for communication between the Z80 and the 1616. This is done by
directly accessing registers within the disk controller I/O space.

The1616’sMC68000canread andwrite variousregisterswithin thecontrollerat fixedaddresses.
Youcanuseyourmonitorcommands forexperimenting,however thecommands listed inSection
8, on software, should be used normally.

Address R/W Name Function

$FFFFC1 R/W ZDATA Read: Data from Z80.
Write: Data to Z80.

$FFFFC3 Read SCLRINT Clear 1616 interrupt.

$FFFFC3 Write SINTZ Interrupt Z80.

$FFFFC9 Read SRXRDY Bit 7 set if receive latch full.

$FFFFCB Read STXRDY Bit 7 set if transmit latch empty.

$FFFFCD Read ZCOMMAND Bit 7 set if the contents of the receive latch is a
command.

$FFFFD1 Write SCOMMAND Write data to the data latch, set SCOMMAND
bit.

2-4 Disk Co-processor SSDCC Design Overview

1616 to SSDCC

The communication between the two processors is quite simple. If the 1616 wishes to transmit
a byte to the Z80, it waits for STXRDY to go true and then writes the byte to the ZDATA port.
The action of writing to ZDATA causes STXRDY to go false until the Z80 has read the new
byte.

SSDCC to 1616

Similarly when the Z80 wishes to transmit to the 1616 it waits for ZTXRDY to go true, and
then writes the data to the SDATA port. This causes the 1616’s SRXRDY signal to go true,
indicating that there is valid data in the receive port latch.

When the 1616 reads the data, SRXRDY goes false and the Z80’s handshake signal ZTXRDY
goes false. In fact ZTXRDY is the complement of SRXRDY and ZRXRDY is the complement
of STXRDY.

Command flag

For software reasons it is desirable that the transmitting processor can add a flag to a transmitted
byte, to indicate whether it is a data byte or a command byte; a command byte is one which
initiatesawhole transactionsuchasreadingadisksector. Beingable to flagcommandssimplifies
the problem of synchronising each processor’s software.

The command bits are address triggered

When the 1616 writes to the data port latch, the MC68000 address line A4 is latched in U17
(74LS74) as the SCOMMAND signal.

When the Z80 sees that data is available (via ZRXRDY) it inspects the SCOMMAND signal.
If this is high then the Z80 knows that the 1616’s A4 signal was high when the data was written;
the 1616’s command port is at an address which has A4 high whereas its data port’s address has
A4 low, so the Z80 can differentiate between command bytes and data bytes.

A transaction between the Z80 and the 1616 involves the 1616 writing a command to the
command port, and then transmitting and/or receiving data in accordance with that command.
Thecommands that are implemented andexpected are detailed in Section 8,on SSDCC software.

If writing your own commands, remember that you should never write data to the ZDATA or
SCOMMAND ports when STXRDY is not asserted. Similarly, data read from the ZDATA port
is meaningless if SRXRDY is not true.

 SSDCC Design Overview Disk Co-processor 2-5

3
The Floppy Disk Interface

A floppy disk system consists of:

• A disk drive or drives, with their associated built-in electronics. Applix recommend
an 80 track, 3.5 inch, double sided drive, for compatibility with other users. You
should contact Applix prior to buying drives, as some brands work better than others.

• A cable to the disk drive controller (a 34 way ribbon cable, with IDC connectors,
available from Applix).

• A power supply to run the drives. In this case, the Applix power supply is used, with
a 4 wire cable, available from Applix. The drives normally require +5 volts, and +12
volts. Note: As the cable for 3.5 inch drives can be accidently plugged in backwards,
you should be careful when plugging in the power connector.

• A drive controller chip, and associated buffer and address select electronics. Applix
use the Western Digital WD1772, on the disk controller card.

• A computer to control the drive controller chip. This is the Z80 on the disk controller
card.

• Software to control the drive controller chip at a low level. This is contained in the
Version 1.4 EPROM on the disk controller card.

In outline, the SSDCC works as below:

68000 in Applix 1616 issues high level disk commands such asblock
read, block write, format, etc. as a single command code byte sent to
$FFFFD1. All other parameters (such as block number) are sent to
$FFFFC1. Data is sent to and received from $FFFFC1.

Z80 in controller card receives command, parameters and data at I/O
address $18. Software in EPROM alters block numbers to track and
sector numbers, issues appropriate command to WD1772 disk con-
troller chip, and drive select latch.

Drive select latch is connected to drive select lines, and side select.
WD1772 produces pulses in step line to move from track to track.
Tests whether it has the correct sector. Reads and writes data, passing
it via the Z80 to SDATA port at I/O address $18.

Drive is connected via 34 way control and 4 way power cable to disk
controller. Responds to pulses on control lines. Reads and writes
sectors upon command.

We will describe the types of disk drives, and then outline how the disk controller chip works.

 The Floppy Disk Interface Disk Co-processor 3-1

Types of disk drives
Floppy disk drives were devised in the mid 1970’s by IBM, and used to load the initial program
code for mainframes. These drives used 8 inch disks, and tended to be expensive. One
manufacturer, Shugart, popularised them by making a cheaper version, using a 5.25 inch disk.
Early versions of all models of disk drives tended to use only one side of the disk, however
virtually all now use both sides. The early 5.25 inch drives were of lower capacity, having only
35 or 40 tracks, rather than the 77 or 80 tracks of the 8 inch drives. The 5.25 inch drives also
rotated slower (300 rpm against 360 rpm), and had a data transfer rate of 125 kbits per second,
only half that of the 8 inch drives. Early drives used single density (FM) data recording methods,
where each data bit was interleaved between clock bits. Later double density (MFM) recording
eliminated this, and the data transfer rate doubled, to 250 kbits per second.

Over the years, these restrictions were overcome, as in the IBM AT high density drive, with 80
tracks, 360 rpm rotation, double standard transfer rates, and 1.2 megabyte capacity. However
the standard (IBM XT style) 5.25 inch drive still uses only 40 tracks, and 300 rpm rotation rate.
Luckily, the connections to most disk drives are relatively standard. Within limits, any fairly
standard (not high density) 5.25 inch disk drive can be made to work on the Applix controller.

A wide variety of 3.5 inch and similar sized disk drives were devised in the mid 1980s. Most
rapidly disappeared, although there are still a few odd (and therefore incompatible) drives, such
as that used by Amstrad word processors, and the Apple Macintosh. A number of earlier
computers also used 40 track, or single sided, 3.5 inch drives. These drives are not supported
on the Applix. Recently, IBM started using a high density drive, providing 1.44 megabyte. The
Applix controller chip can not support this drive.

The Applix is designed to use an 80 track, double sided, 300 rpm, 3.5 inch drive. This provides
800 kilobytes of storage, and a data transfer rate of 250 kbits per second. These are the drives
used on all recent Amiga, Atari ST, and PC clone portable computers. All the discussions to
follow assume the above drive.

Chart of drive characteristics

3-2 Disk Co-processor The Floppy Disk Interface

Size Tracks TPI Sides Transfer Rotation Sector Record Size Name
inches Rate Rate rpm Size Method in kbyte

8 77 48 1 250 360 26x128 FM 250 SSSD

8 77 48 2 250 360 26x128 FM 500 DSSD

8 77 48 2 500 360 26x256 MFM 1000 DSDD

5.25 35 48 1 125 300 10x256 FM 87 TRS80

5.25 35 48 1 163 300 16x256 RLL 140 Apple

5.25 40 48 1 125 300 16x128 FM 71 CP/M
SSSD

5.25 * 40 48 1 250 300 8x512 MFM 160 SSDD

5.25 * 40 48 2 250 300 9x512 MFM 360 DSDD

5.25 * 80 96 2 250 300 15x256 MFM 600 80T

5.25 80 96 2 500 360 15x512 MFM 1200 AT HD

3.25 80 135 1 Var Var Var RLL 400 Mac

3.25 80 135 2 Var Var Var RLL 800 Mac

3.25 * 80 135 2 250 300 9x512 MFM 720 IBM

3.25 * 80 135 2 250 300 5x1024 MFM 800 Applix

3.25 80 135 2 500 300 18x512 MFM 1440 IBM HD

Drive mechanics
The DC drive motor circuit includes an integral tachometer and servo speed control that rotates
the disk at exactly 300 rpm, or 5 times a second. The read/write head is mounted on a carrier
that moves back and forth over the disk. The stepper motor driving it can move it only a track
at a time, to provide 135 tracks per inch. The total distance between track 0 and track 79 is only
a little over a half inch, so each track occupies less than 7/1000th of an inch.

The movement from track to trackmust be identical for every drive, since they have to read
disks made by other drives. This means that the disk must be seated correctly in the drive (the
metal hubs of 3.5 inch disks help here). In short, disk drives are a piece of high precision
equipment.

Drive electronics
The printed circuit board assembly in the drive contains surface mounted electronics to perform
the following functions:

• Detect which of four possible drive numbers are selected.

• Start the drive motor rotating.

• Select the correct side of the disk to use.

• Position the read/write head to the correct track.

• Detect when the read/write head is over track 0.

• Detect when a disk is write protected.

 The Floppy Disk Interface Disk Co-processor 3-3

• Detect the sector index hole in the disk.

• Generate signals in the read/write head to write data, or read magnetic flux changes
from the disk.

Except for the last function, all the above involve uncomplicated circuits.

When you are to use a drive, it must receive signals to select whatever drive number it is set to,
plus the motor must be turned on (and allowed a half second or so to reach correct speed). The
side of the disk to use must be selected. The direction the head is to move must be selected,
and then a correctly timed step pulse must be applied enough times to move the head to the
required track.

If for some reason the drive controller does not know which track the head is currently positioned
over, it must be moved to track 0. The step direction is set to step out, and 80 or more pulses
are applied to the step pulse line. Then the controller checks for a track 0 indicator from the
drive. If it doesn’t get it, this sequence may be repeated, and/or an error message generated.

When the drive read/write head reaches the required track, the head is brought in contact with
the disk. The head reads the disk, and the drive controller chip looks for a pattern in the format
information, indicating it has the correct track number and sector. Other patterns in the format
information allow the drive controller chip to start reading or writing at exactly the right point
for the 1024 bytes it needs to use as data. The actual format information is not altered.

All this could be done by directly controlling the disk drive from the CPU. In the Apple, for
example, the drive stepper motors and everything except the read and write data are directly
operated via latched lines from the CPU. In Charles Moore’s Forth engine, even the bit serial
read and write data are directly generated by the CPU. However, this occupies a lot of CPU
time, and the general practice is to allow a specialised disk controller chip to do most of the
work.

The actual tracks are magnetically recorded on the disk when you format and initialise it. The
disk controller chip takes care of keeping count of which track is being used. Tracks are also
subdivided into sectors by the disk controller chip when you first format a disk. Each sector
can contain 128 bytes, 256 bytes, 512 bytes, or 1024 bytes of data. The Applix uses 1024 byte
sectors (IBM PCs use 512 byte sectors).

Disk speeds
The information in a sector is transferred at a rate fixed by the clock fed to the controller chip.
The standard double density rate is 250,000 bits per second, or 31,250 bytes per second. The
controller chip takes care of converting parallel bytes from the Z80 CPU into the serial read/write
data. If you do some arithmetic using this bit rate, and the rotation rate of 5 times a second, you
will see each track can contain 6250 bytes in total. However, the Applix stores only five 1024
byte sectors, or 5120 bytes per track (819,200 bytes per disk).

The missing bytes are essential for locating and identifying the material we store on disk, and
are placed on the disk by the controller chip when we first format the disk, as discussed later.

It followsthat, ifwe read all five sectorsoneafteranother, andcould instantlymove the read/write
head to another track and start reading again, we would transfer information from the disk at
25,600 bytes per second. Several factors may constrain this.

• It takes about a half second for the disk drive motor to reach the correct speed, and
we should not read data before this occurs.

3-4 Disk Co-processor The Floppy Disk Interface

• The sectors we wish to read may not follow each other. This depends both upon
whether theoperating system attempts to store them thisway, whether we havealtered
their length along the way, and whether there was room to store them in a contiguous
form. When files are scattered all over the disk, it is said to be ‘fragmented’. There
are various techniques of disk space allocation that can reduce (but usually not
eliminate) fragmentation.

• We may not be able to start reading a following sector before it has moved past the
read/write head. In this case, we have to wait one and one fifth revolutions (240
milliseconds) for it to come round to the read/write head before we can read the next
sector.

• The next sector may be on another track. The head takes a certain time (between two
and twelve milliseconds on our drives, up to 30 milliseconds on some older drives)
to move from one track to the next. It also takes a certain length of time for the head
to settle on the track again (some drives keep the head in contact with the track
whenever they are seeking another track). If the required sector has already moved
past the read/write head, we again have to wait up to 240 milliseconds. For this
reason, sectors are sometimes skewed from one side of the disk to the next, or from
one track to the next.

Since we can read both sides of a disk, we can take this into account when formatting,
as you will see in the command for formatting a disk. Side 0 sectors are, in order,
1,4,2,5,3, while side 1 sectors are 3,1,4,2,5. If we read alternate sides of the disk, we
should be able to read ten sectors (10k) in two revolutions (400 milliseconds). You
should note that the same skew is used for each track, so if we could move to the next
track fast enough, we could start reading immediately. Of course, if the sector is not
on the next track, the head movement time will be greater, and skewing may not help.

• Our Z80 CPU may not be able to keep up with the rate at which data is being delivered
from the disk. The Z80 has about 32µseconds to deal with each byte from the disk.
If it is being interrupted to do something else (like output to the 1616), it may not be
able to keep up.

The same sort of transfer rate is required between the Z80 and the 68000 in the 1616,
when we move disk bytes to their final destination.

• Finally, some disk files, such asxrel programs, require some preliminary processing
by the 68000 before they can be moved to their correct location.

All of the above factors tend to make it difficult to achieve theoretical disk drive data transfer
speeds. One encouraging sign is that most operating systems, whatever the computer, tend to
approach theoretical maximum speeds more closely as they mature, and as their low level code
is tuned for speed. Here are some typical times (in seconds) for file operations on a few different
computers.

File size Applix Amiga Atari Macintosh MS-DOS
kilobyte

5 11 2.9

10 12 3.6

20 14.5 5.5

50 23 9.3

100 40 17.1

 The Floppy Disk Interface Disk Co-processor 3-5

Disk controller chip
The disk controller uses Western Digital’s WD1772 all digital floppy disk controller IC. A
floppy disk controller handles the low-level control of the disk drive:

• Synchronisation of new data with that which is already on the disk

• Checking for errors in read data

• Searching for the correct disk sector

• Issuing stepping pulses to move the disk drive’s read/write head to the correct track,
etc.

The disk controller chip only knows about tracks, and sectors, and reading and writing them. It
does not know about file names, nor where in memory files should go. This leaves the Z80 with
the task of issuing commands to the controller, transferring data to or from it and handling errors
which the controller detects.

We have seen many generations of floppy disk controllers over the years; it is only this latest
generation which have avoided the need for setting up magic frequencies with variable
capacitors, devising ingenious data separators which occasionally worked, etc. The all-digital
design of the WD1772 eliminates these problems. The chip still has a few problems which can
keep a programmer quiet for a few days, however ...

The WD1772 is a low cost version of the FD179x line. Although it is not able to use high density
disk drives, it has the advantage of being relatively cheap, and includes a built-in data separator,
plus write pre-compensation. The only additional components needed are buffers between it
and the drive, and chip select circuit. It provides all the signals needed by the drive, and handles
conversion of parallel data to the serial, clocked format required by the drive. The chip is
designed to operate only one drive, which is why the Applix has a separate latch to control the
drive select and side select lines. In the Applix, only MFM format data (double density) is used,
although the chip itself can also handle the older single density FM format (the chip connection
that controls this is not used).

The WD1772 appears to the Z80 as four I/O locations, starting at I/O address 40H.

• The WD1772 is operated by writing a control byte to $40, and its status determined
by reading from 40H.

• Address 41H contains its track register, whose contents are automatically increased
by one when the head steps in a track, and decreased by one when it steps out. During
disk read, write and verify, the contents of this register are automatically compared
with the format information on the track.

• The sector register is at 42H, and the contents are also automatically compared with
the recorded sector information during disk reads and writes. Sectors count from 1
to 255, while tracks count from 0 to 255. This seems inconsistent and silly, but it is
the way all the chips do it.

• Actual data is transferred to and from the controller chip at I/O location 43H.

Controller commands
The WD1772 accepts eleven command words in its command register. These are divided into
four groups. Before using a command, you should check that the busy bit (0) of the status
register ($40) is off. You would not normally use the 1616 at this level, unless you are writing
your own low level disk routines. This information is included to give you a general idea of
how the disk controller works. You will need a copy of the WD1772 manual if writing low
level code.

3-6 Disk Co-processor The Floppy Disk Interface

Type 1 commands optionally verify the track. All Type 1 commands generate an interrupt when
completed, however INTRQ, pin 28, the interrupt output, is not connected in the Applix (the
Applix could use DRQ, pin 27, the data byte present line, to force an interrupt as each byte of
data becomes available.) Obviously, if more than one drive is present, the track register must
be updated prior to issuing these commands. This is a consequence of the drive controller chip
being designed to operate one drive only (well, if you built controller chips for a living, would
you make it easy to avoid buying extras?) The Type 1 commands are:

• Restore. Locate track 0, update track register to 0.

• Seek. Assumes track register is correct, and data register contains the desired track.
Steps to the desired track.

• Step. Steps one track in whatever direction was last used.

• Step-in. One step in the direction of track 79.

• Step-out. One step in the direction of track 0.

Type II commands read and write sectors. Prior to issuing these commands, you must load the
sector register with the number of the desired sector. If the correct track and sector is not found
within four disk revolutions, the command produces an error (status bit 4 set). An interrupt is
produced upon either completion or error. The command can be used to read and write multiple
sectors, of up to a full track, by setting them flag within the commands.

• Read sector. Checks for correct track and sector, then reads a sector (or multiple
sectors). Generates a pulse on DRQ, pin 27, which is not used by the Applix. The
Z80 must poll the DRQ bit in the status register before the next byte is available. The
lost data status flag is set if a read is not done in time.

• Write sector. Checks for correct track and sector, reads formatting information to
locate start of data field, and generates DRQ, pin 27. It then expects the first data
byte to be loaded in the data register. The lost data status bit is set if each following
byte of data is not supplied in time for the write.

Type III commands can be used for diagnostics and track formatting.

• Read address. This command reads the first ID field it finds from a formatted disk.
You would need to position the head on the desired track before using it. It produces
six bytes, which contain the actual track address, the side number, the sector address,
the sector length, and two CRC bytes. The controller chip verifies the CRC values,
and sets the CRC error status bit if an error is encountered.

• Read track. This powerful diagnostic command ignores all formatting, and all CRC
errors. It readsall bytes between one index pulse and the next. This includes all gap,
header and ID field bytes. Because synchronisation is not performed, the gap bytes
may read incorrectly. Probably of use in determining details of ‘foreign’ formats,
nature of disk errors, and the like.

• Write track, or formatting the disk. To use this, position the head over the desired
track. The command writes from one index pulse to the next. It produces the correct
headerand syncronisation information, while the Z80 provides the gap and databytes.

There is only one type IV command, and that is a forced interrupt, used to terminate a multiple
sector read or write, or to force the status register into Type 1 mode. You must wait 16µseconds
after a forced interrupt before issuing another command.

The bit patterns for all commands are summarised below:

 The Floppy Disk Interface Disk Co-processor 3-7

Type Command 7 6 5 4 3 2 1 0

I Restore 0 0 0 0 h V r1 r2

I Seek 0 0 0 1 h V r1 r2

I Step 0 0 1 u h V r1 r2

I Step-in 0 1 0 u h V r1 r2

I Step-out 0 1 1 u h V r1 r2

II Read sector 1 0 0 m h E 0 0

II Write sector 1 0 1 m h E P a0
III Read address 1 1 0 0 h E 0 0

III Read track 1 1 1 0 h E 0 0

III Write track 1 1 1 1 h E P 0

IV Interrupt 1 1 0 1 I3 I2 I1 I0

The various flags in the commands have means as follows:
h Motor on flag, bit 3. 0 = enable spin up sequence.
V Verify flag, bit 2. 1 = verify destination track.
u Update flag, bit 4. 1 = update track register automatically.
r 1, r 2 Stepping rate, bits 1, 0. 6, 12, 2 and 3 milliseconds.
m Multiple sector flag, bit 4. 1 = multiple sectors.
a0 Data address mark, bit 0. 0 = write normal data mark.
E 30ms head settling delay, bit 2. 0 = none, 1 = 30 ms delay.
P Write precompensation, bit 1. 0 = enable.
I 1 The interrupt features are not used.

The status register bit meanings change, according to the type of command being issued. Here
is a summary.

3-8 Disk Co-processor The Floppy Disk Interface

Bit Name Status Register Meaning

7 Motor On Reflects status of MOTOR ON line

6 Write Protect During a write, set on indicates a write protected disk.

5 Record Type / Type I commands, set on indicates motor spin up sequence has
Spin Up completed six revolutions. Type II and III commands, shows

record type, where 0 = data mark, 1 = deleted data mark.

4 Record Not Found Set on, means track, sector or side not found.

3 CRC Error If bit 4 is also set on, bit 3 is set on if an error is found in an
ID field. Otherwise it indicates an error in the data field.

2 Lost Data/ Set on, computer did not respond to DRQ in one byte time.
Track 00 Resets to zero when updated. During Type I commands, set

on indicates track 00 has been reached.

1 Data Request/ Copy of DRQ line output. Used in polled read and write of
Index the data register, as done by Applix. When set on, indicates

the data register is full on a read, or empty on a write. Resets
to zero when updated. On Type I commands, shows status of
index pulse.

0 Busy Set on, indicates a command is being executed.

Format byte patterns
The general pattern of disk bytes follows the IBM double density standard. Note that some of
the bytes on disk are generated internally by the controller, not by your format byte pattern.
After the index pulse, there are 60 bytes of 4EH. This is followed by the repeated sector pattern,
approximately as follows:

Name Number Value Description

12 00 Synchronisation bytes
3 F5 Writes A1
1 FE ID field address mark

Track 1 Track number (0 thru 4C, potentially F3)
Side 1 Side number 0 or 1
Sector 1 Sector number (1 thru 5, potentially F3)
Length 1 03 Sector length (00 = 128, 01 = 256, 02 = 512, 03 = 1024)

1 F7 (2 CRC’s written)
Gap II 22 4E

12 00
3 F5 Writes A1
1 FB Data address mark

Data 1024 Your data
1 F7 (2 CRC’s written)

24 4E

 The Floppy Disk Interface Disk Co-processor 3-9

Disk select latch
The disk select latch (U16, 74LS273) at I/O address $08 produces signals which are set up by
the Z80 and which are used for selecting between multiple drives (DS0 and DS1), ejecting the
disk, selecting the desired side of the disk, etc. These are commands that can not be directly
produced by the disk controller chip.

Bit 7 80H MAP
Bit 6 40H BANK
Bit 5 20H Side select, side 0 or 1 or disk drive
Bit 4 10H Motor on, and LED
Bit 3 8H Drive select 1
Bit 2 4H Drive select 0
Bit 1 2H /EJECT line
Bit 0 1H /INUSE line

If the Z80 reads from the same I/O location ($08, at U15, 74LS244), you can obtain the status
of the disk drive /DISK CHANGE and /READY lines.

Bit 1 $2H /DISK CHANGE
Bit 0 $1H /READY

Summary
The information in this section provides sufficient detail for the programmer to start working
on low level disk routines. Applix does not, however, suggest or encourage the use of this
information within normal programs. You should use the existing block device routines and
system calls detailed in theApplix Programmer’s Manual. In particular, if you write your own
low level routines, don’t expect Applix to ensure that other programs always run with them.

3-10 Disk Co-processor The Floppy Disk Interface

4
Construction Technique

The recommended construction method is called Progressive Assembly and Test (PAT) and is
the technique that will be described in this construction manual.

PAT involvesbreaking theconstruction intoanumberofsmall, simplesteps,essentiallybreaking
the SSDCC’s complex circuit into a number of smaller ones. As each step is completed, a
number of simple checks are done ensuring that this step is working. If something is wrong, it
is corrected at this stage, before proceeding to the next step. The steps are arranged in such a
way that each will work only if the ones preceding it work, so youmust nevergo on to the next
step until the present one works.

By constructing the SSDCC in this fashion, at the completion of the last step, everything should
work. Also, by breaking the circuit up into a number of smaller ones, it gives a better under-
standing of how the SSDCC functions.

Who can build this kit
It is expected that you have constructed electronic kits before (e.g. the 1616) and/or have
experience in digital electronics at either a hobbyist or professional level. If you are a complete
beginner it might be best to try a smaller project first or to make arrangements with a friend to
help you just in case you get into trouble.

‘Fix It’ guarantee
If your built-up SSDCC fails to operate and you can not trouble shoot the fault(s), you may wish
to take advantage of the Applix ‘Fix It’ guarantee. Our technicians will check and repair your
SSDCC as required, for the flat fee of $100.

This fee includes replacement of any necessary components that may have been damaged during
or after construction. Your SSDCC must be unmodified and must be constructed using decent
IC sockets to use the ‘Fix It’ service.

If a kit is so badly constructed as to make repair impossible, we reserve the right to return the
computer (and the service fee) in the condition received. The ‘Fix It’ fee covers only the actual
SSDCC; it does not cover your 1616, power supply, keyboard, other expansion boards etc. It
is a ‘Fix It’ service only, not a construction service.

Built and tested
If you feel you are not capable of building the SSDCC, you may wish to return the kit in its
original condition and purchase a built and tested SSDCC or arrange a refund. We can not
accept a return once construction has commenced, if any of the component packs have been
opened, or if the kit or cartons have been damaged in any way. Please contact Applix concerning
pricing of the built and tested SSDCC, and the returns procedure.

 Construction Technique Disk Co-processor 4-1

Getting started
Before getting started there are a few extras you will have to get. Below is a list of what would
be considered the minimum required.

() A pair of fine cutters. (Dick Smith Cat #T-3205 or similar)
() A fine tipped soldering iron. (Dick Smith Cat #T-2000 is ideal)
() A roll of fine solder. (Multicore 60% tin/40% lead with no copper, medium active

flux is recommended)
() Small screwdrivers etc.
() Alligator clips, small pieces of wire etc.
() A working 1616 motherboard, power supply, keyboard, etc.
() Cabling: You will be required to make cables to connect the SSDCC to your disk

drive(s), as discussed in appendix A.
() A 3.5" double sided 80 track floppy disk drive(s). Some people use 5.25" drives, but

these are not considered standard, and are best used as a second drive.
() Test Equipment. The minimum required here is a multimeter and a logic probe (Dick

Smith cat #Q-1272 or similar). An oscilloscope is an advantage, but if all goes well,
is not actually required.

4-2 Disk Co-processor Construction Technique

5
Parts List

Before doing anything, check off the parts list against the parts supplied with your SSDCC kit.
Do the same for any expansion kits (SSDCC I/O Kit etc.) that you may also have purchased. If
you find anything incorrect, or any parts missing, you should contact Applix immediately for
the part(s) to be sent or replaced.

Basic kit
Resistors

() R1 330 (org-org-brn)†
() R2 3k3 (org-org-red)
() R3 3k3 (org-org-red)
() R4 3k3 (org-org-red)
() R5 3k3 (org-org-red)
() R6 470 (yel-pur-brn)

†Notes: R1 may be marked 680 on some boards; use the 330Ω supplied. All resistors are 5%
tolerance (this means they have four colour bands, the first three of which are indicated above,
and the last band is gold).

Resistor networks

() RN5 180 (181) (10 pin, 9 resistors)

Notes: RN1,2,3 and 4 are used in the SCSI hard disk interface and are supplied in the optional
SSDCC SCSI Kit. Resistor networks must be inserted the correct way round. Look for a small
dot at one end. As component values in this area are not critical, your kit may come with resistors
of slightly different values.

Capacitors

() C1 10uF tantalum (106)
() C2 .1uF monolithic (104)
() C3 .1uF monolithic (104)
() C4 .1uF monolithic (104)
() C5 .1uF monolithic (104)
() C6 .1uF monolithic (104)
() C7 .1uF monolithic (104)
() C8 .1uF monolithic (104)
() C9 .1uF monolithic (104)
() C10 .1uF monolithic (104)
() C11 .1uF monolithic (104)
() C12 .1uF monolithic (104)
() C13 .1uF monolithic (104)
() C14 .1uF monolithic (104)
() C15 .1uF monolithic (104)
() C16 .1uF monolithic (104)
() C17 10uF tantalum (106)
() C18 .1uF monolithic (104)
() C19 .1uF monolithic (104)
() C20 .1uF monolithic (104)
() C21 .1uF monolithic (104)

 Parts List Disk Co-processor 5-1

() C22 10uF tantalum (106)
() C23 10uF tantalum (106)
() C24 .1uF monolithic (104)
() C25 .1uF monolithic (104)
() C26 10uF tantalum (106)
() C27 .1uF monolithic (104)

Notes: The kit may be supplied with either low leakage electrolytic or tantalum capacitors.
Tantalum and electrolytic capacitors must be installed the correct way round. Monolithics
(usually small blue ones) do not.

Integrated Circuits

Position Number Description
() U1 6264/8264 8K static RAM
() U3 27128/27256 SSDCC-B ROM
() U4 Z80H Z80H CPU
() U6 74LS74 Dual D type flip flops with clear
() U7 74F74 Dual D type flip flops with clear
() U8 ZPAL 16L8 Z80 decoding PAL (8K)
() U11 74LS04 Hex inverters
() U13 74LS138 3 to 8 line decoder
() U14 74LS74 Dual D type flip flops with clear
() U15 74LS244 Tri-state buffer
() U16 74LS273 Octal latch
() U17 74LS74 Dual D type flip flops with clear
() U18 74LS74 Dual D type flip flops with clear
() U19 74LS38 Quad 2 input NAND gates (OC)
() U20 74LS32 Quad 2 input OR gates
() U21 74LS06 Hex inverters (OC)
() U22 74LS244 Tri-state buffer
() U23 WD1772 Western Digital disk controller
() U24 SPAL 16L8 MC68000 decoding PAL
() U25 74LS30 8 input NAND gate
() U26 74LS30 8 input NAND gate
() U28 74LS374 Tri-state octal latch
() U29 74LS374 Tri-state octal latch

Notes: Integrated circuitsmust be inserted the correct way round. Look for a small indentation
at one end, and match it with that marked on the circuit board.

U5,9,12 are all spare and are not used.

U7 may be marked 74LS74 on some boards.

U10 is used in the SCSI hard disk interface and is supplied in the optional SSDCC SCSI Kit.

U21 may not be an LS version, and may be marked 7406.

U27,30,31,32,33 are used in the serial port and are supplied in the optional SSDCC I/O kit.

U2 allows expansion of the SSDCC memory and is not supplied (or required) for floppy disk
operation. If you have additional RAM, you may add it once the SSDCC is built and completely
tested. No DIP switches, links or software changes are needed. If extra memory is added,
Greyham Stoney’s Shareware #7 disk drive utilities will make use of it.

5-2 Disk Co-processor Parts List

Miscellaneous

() LED1 5mm red LED
() SW 4 way DIL switch (only SW1 and SW2 are used)
() OSC 16.000MHz TTL oscillator
() SSDCCPCB SSDCC printed circuit board

Connectors

() Floppy disk data 34 way right angle IDC header connector
() Z80 interrupts 6 way IDC strip (2x3 pins)
() Floppy disk power 4 way R/A PCB mount mini KK (M5046-4A)
() Edge connector 80 way R/A PCB mount (2x40)

IC socket kit
() 15 x 14 pin IC socket
() 1 x 16 pin IC socket
() 7 x 20 pin IC socket
() 4 x 28 pin IC socket
() 3 x 40 pin IC socket

SCSI kit
Integrated Circuits

() U10 5380 SCSI controller

Resistor networks

() RN1 330 (331)
() RN2 220 (221)
() RN3 330 (331)
() RN4 220 (221)

Connectors

() SCSI interface 50 way right angle IDC header connector
() Hard disk power 4 way R/A PCB mount mini KK (M5046-4A)

Note: SSDCC-S ROM required, and 64K memory recommended, but not required.

I/O kit
Integrated Circuits

() U27 Z8530 Dual serial communications controller (SCC)
() U30 1489 RS232C line receiver
() U31 1488 RS232C line driver
() U32 1489 RS232C line receiver
() U33 1488 RS232C line driver

Connectors

() Serial A PCB mount right angle male DB9
() Serial B PCB mount right angle male DB9

 Parts List Disk Co-processor 5-3

() SJA-0 18 way IDC strip (2x9 pins)
() SJA-1 18 way IDC strip (2x9 pins)
() SJB-0 18 way IDC strip (2x9 pins)
() SJB-1 18 way IDC strip (2x9 pins)
() Shunts to suit strips (total 26)

5-4 Disk Co-processor Parts List

6
Construction: Part 1

1616 requirements
Before you begin construction of the SSDCC you must first solder in one or more expansion
sockets (available from Applix, and elsewhere) to your 1616 mother board. After soldering in
the connector(s), verify that your 1616 still works correctly.

Your 1616 should preferably be fitted with 1616/OS Version 4 EPROMs, although the SSDCC
will operate from Version 2.0 up (the SSDCC will not operate in a 1616 containing Version 1
EPROMs). Disk users should update to the current 1616/OS, Version 4, as soon as possible,
as most of the features mentioned in the version 4 manuals do not operate in version 2. We
remind users that Versions 2 and 3 are no longer supported with bug fixes or programs. Last
upgrade for these was Version 3.2c in early 1989.

The 6522 VIA modification (3K3 pullup resistors on pins 35, 36, 37 and 38, to +5 volts) should
be made to your Applix 1616 motherboard. Otherwise your system may lock up at times (about
one system in five exhibits this problem, which is due to a design problem in the 6522 chip).

Hints, tips and notes
Youmustalways turnthepoweroff andwaitabout30secondsbeforepluggingand/orunplugging
your SSDCC from your 1616 mother board and inserting and/or soldering in any components.

Many of the components are polarised. This means that they must go in a particular way. These
include the LED, oscillator, tantalum or electrolytic capacitors, resistor networks and the inte-
grated circuits (ICs).

Incorrect insertion will probably damage the component and possibly others connected to it.
The SSDCC PCB’s componentoverlay (the whiteoutlines on theboard) indicates the orientation
of polarised devices. Integrated circuit orientation is indicated by a small indentation at one
end, which should align with the same type of marking on the printed circuit board. Resistor
networks are marked with a small dot at one end. Tantalum and electrolytic capacitors are
marked on the board with a+, however in some brands of capacitor, the opposite leg is marked
with a -.

Although resistors and monolithic caps are not polarised, and will not cause problems regardless
of which direction they face, it is advisable to orient them all the same way. This makes reading
the values easier later on and also makes the board much neater. For resistors, orienting them
left to right (with the gold band to the right) makes it easier to read them.

Integrated circuits and sockets
We highly recommended that the SSDCC be constructed using IC sockets. This makes con-
struction and replacement of faulty ICs easier, and it also allows you to take advantage of the
Applix ‘Fix It’ service, if worst comes to worst. It is very important to use high quality sockets,
as intermittent problems caused by using low quality sockets are hard to find, and make the
operation of your computer unreliable.

Orientation of the IC sockets is also very important. Most sockets have a notch at one end to
indicate pin 1. Match this with the orientation markings on the SSDCC PCB.

 Construction: Part 1 Disk Co-processor 6-1

Great care must be taken when handling ICs. The Z80H, EPROM, 5380, SCC and RAM ICs
are particularly sensitive to static electricity. ICs must be inserted the correct way and in the
correct place. Before inserting an IC always check the following:

• You have turned the power off to your 1616 and removed the SSDCC.

• You have the correct IC.

• You are plugging it into the correct socket.

• You are plugging it in the correct way round.

• You haven’t bent any pins under or out.

• All of the above again!

It is a good idea to mark pin 1 of each IC with a small dop of liquid paper or to a make a little
stick-on.

Soldering
The most expensive part of the whole SSDCC kit is the printed circuit board. It is also the
hardest thing to replace if damaged. The board has been especially designed for manual con-
struction. It has a solder resist mask on both the component side and the wiring side for easier
soldering and a comprehensive component overlay to aid construction. The components are all
soldered on the side that has the white component overlay.

A fine tipped soldering iron is a must. Any tip larger than about 4mm may damage the board
and damage the tracks or pads. An iron temperature of about 350 degrees is recommended. It
is advisable to fit a new tip to your iron before starting this project and, if your soldering is a
bit rusty, spend a bit of time practicing on a junk board. A few minutes practice could be the
difference between success or failure.

Use only high quality fine solder and clean the tip of your iron on a damp sponge regularly.
Always apply solder to the hot joint, don’t try to take it to the board on the tip of your iron. The
solder should flow easily through the plated-through holes; the solder should not flow through
on to the component side of the board. Just one more point- keep your soldering neat! Do not
use excessive amounts of solder. This only results in an ugly board and increases the risk of
solder splashes and bridging. Check your soldering regularly. Try and keep everything neat
and don’t rush!

Board modifications

Some future upgrades of the SSDCC require modifications to the existing printed circuit
board. These modifications are easier to make prior to construction. If you contemplate
upgrades, you may prefer to make the following modifications prior to commencing con-
struction.

• Drive select modification, for future use of more than two drives. Drive Select line
1 (pin 12 of the drive connector) and Drive Select line 3 (pin 6 of the drive connector)
are linked, under the drive connector. Cut the track between them, being careful that
DS1 (pin 12) remains connected to pin 3 of U19, a 74LS38. This will require a wire
link.

• Five volt line, labelled B, to pin 25 of SCSI connector. This line needs to be cut if
you intend running somebrandsof SCSIhard disks. Assomebrands maybedamaged,
cutting the line now may be worthwhile. You should note that other brands of SCSI
drive will not operate correctly unless this +5 volt line is connected.

6-2 Disk Co-processor Construction: Part 1

• Hard disk interrupt modifications, used with Mark Harvey’s Version 2.1, (and allodd
numbered versions of hard disk software - even numbered versions are identical,
except they do not use interrupts, and don’t require board modifications). These
require an extra chip, and are best done only if you intend to obtain a hard disk in the
near future. Details are in the hard disk supplement to this manual.

Construction
As mentioned in the introduction, we will construct the SSDCC in small steps using the Pro-
gressive Assembly and Test (PAT) method. Remember, it is pointless to jump steps, or to
proceed to the next step until it is verified that the current one is working correctly.

Step 1
Checkout PCB
Just before commencing construction, spend a few minutes examining your board. Hold it up
to the light and look closely at the back and front for anything odd. If you find something wrong
contact, Applix before going any further. It is pointless to start soldering a board that is faulty.

With your multimeter switched to resistance, measure for open circuits between the following
points:

() COM and +12 () COM and +5
() +12 and +5

The easiest place to locate these point is at the floppy disk power connector (marked by a 1 cm
white rectangle near the top of the board close to U27). This has all the power lines clearly
marked on it.

PROBLEM

It is highly unlikely that you should find a short between any of these points. If you do, contact
Applix for a free board replacement.

Finally, just before we begin construction, gently wipe the board with a clean soft cloth.

Step 2
Resistors
Insert and solder into place all the resistors. Just before soldering them in double check that the
resistors are the right values. After soldering, turn over the board and neatly trim off the leads.

Step 3
IC Sockets, resistor networks
Solder in all the IC sockets. It is best to do about 10 at a time. Make sure that you solder the
correct sized socket into each position and that the notch on the IC socket matches the small dot
identifying pin 1 on the PCB.

It is a good idea to solder in the top left hand pin and the bottom right hand pin of the socket
first. Then holding the PCB upright, gently push the socket from the top side of the board whilst
touching the soldered pins with your iron to make sure that the socket is flush with the board
before soldering it in completely.

Solder in the resistor network (including RN1,2,3 and 4 if you have the SSDCC SCSI kit).

Match the small dot identifying pin 1 of the resistor network with the dot on the PCB.

 Construction: Part 1 Disk Co-processor 6-3

Step 4
Edge connector, LED
Solder in LED1, ensuring you have it the correct way round. The LED has one leg longer than
the other. This is the anode, it connects to the positive side of the circuit, and is indicated by
the triangle part of the symbol on the PCB. The short leg is the cathode, often markedk, connects
to the negative side of the circuit, and is indicated by the bar part of the symbol on the PCB,
and also sometimes has a flat face on one side of the rim of the LED.

Next solder in the 80 way right angle edge connector, with the pins facing down off the edge
of the PCB.

Plug the SSDCC into 1616 mother board. Connect your power supply and switch it on.

Measure all the power supplies for the correct voltages. Verify your 1616 is still working.

PROBLEM

If there is any smoke, explosions etc, turn the power off immediately. Give the PCB a good
visual inspection and double check for shorts, solder-bridges, reverse polarisation etc. Replace
any damaged parts. Test your power supply.

Step 5
Monolithic caps
Solder in all the monolithic caps (these are usually the small blue ones). Do not solder in the
tantalumcapacitorsas yet (the tantalum havea+signnext to theirpositionon thePCBcomponent
overlay).

Plug the SSDCC into 1616 mother board. Connect your power supply and switch it on.

Measure all the power supplies for the correct voltages. Verify your 1616 is still working.

PROBLEM

Double check soldering and SSDCC PCB. If the fault cannot be found cut one leg of each cap
(on the top side of board) until the faulty cap is located.

Step 6
Tantalum caps
Solder in all the tantalum caps. Make sure that you have every one soldered in the correct way
round. The PCB is marked with a+ next to the positive leg of each tantalum. The tantalum
will usually have a (very small)+ next to one of its legs.

If you have been supplied with electrolytic capacitors, some brands have the negative leg marked
with a -. In this case, the- leg goes in the PCB hole away from the+ marking.

Plug the SSDCC into 1616 mother board. Connect your power supply and switch it on.

Measure all the supplies for the correct voltages. Verify your 1616 is still working.

PROBLEM

Double check orientation of caps, your soldering and PCB. If the fault cannot be found cut one
leg of each cap (on the top side of board) until the faulty cap is located.

6-4 Disk Co-processor Construction: Part 1

Step 7
Connectors, links
Solder in the floppy disk power connector (also the hard disk power connector, which is just
next to it, if applicable). This is a small, 4 pin, right angle connector. The pins face the top
(closest) edge of the PCB, and the plastic tab (if it has one) is between the legs and the board.

DIL switch. This should be oriented so that the switch numbers read from the top edge of the
board down. They will usually read 1 to 4, but some switches may be marked 0 to 3. We have
assumed they are marked 1 to 4. Only the first two are used.

The 34 way right angle floppy disk data connector (also Serial and SCSI connectors if you have
them) should be soldered so that the pins face the closest edge of the PCB.

Check the power supply voltages again.

Note: The DIL switch should be soldered in so that SW1 is towards the top of the
SSDCC board. Also note that the two serial connectors are males (pins).

Next solder in the strapping blocks (a 2 by 3 set of metal pins) as follows:

‘Z80 INT’ strapping block 2 x 3 pins (below U11)

Also, if you have the I/O kit, solder in SJA-0, SJA-1, SJB-0 and SJB-1 (all 2x9 pins).

Note: Do not install any straps on the blocks as yet.

Plug the SSDCC into 1616 mother board. Connect your power supply and switch it on.

Measure all the supplies for the correct voltages. Verify your 1616 is still working.

PROBLEM

Give the PCB a good visual inspection and double check for shorts, solder-bridges etc.

 Construction: Part 1 Disk Co-processor 6-5

7
Construction: Part 2

Guide to testing, and inserting ICs.
From here on the format of construction changes. The following six instructions detail how to
proceed through each step and should be used with reference to the circuit diagram and PCB
component overlay.

POWER OFF
You must always turn the power off and wait about 30 seconds before unplugging
the SSDCC from your 1616 mother board and before the insertion or removal of any
components. ‘Power off’ may be followed by a few additional instructions to be
completed after the board has been turned off.

INSERT
This is always followed by a list of ICs to be inserted. Great care must be taken when
handling ICs. The Z80H, EPROM, 5380, SCC and RAM are particularly sensitive
to static electricity. ICs must be inserted the correct way and in the correct place.
Check the following every time you are about to insert an IC:

• You have turned the power off to your 1616 and removed the SSDCC.

• You have the correct IC.

• You are plugging it into the right socket.

• You are plugging it in the right way round.

• You haven’t bent any pins under or out.

• All of the above again!

It is a good idea to mark pin 1 of each IC with a small drop of liquid paper or to a
make a little stick-on.

VERIFY
This could be a list of tests to complete and tick off or a list of instructions to complete
and verify. It is assumed that the constructor has a multimeter, logic probe and/or an
oscilloscope for such tests. It is safe to assume that you must plug the SSDCC into
your 1616 and then turn the power on at the start of ‘verify’.

PROBLEM
This instruction always follows ‘Verify’. If you can not verify a test ‘Problem’
suggests possible causes and/or fixes.

SWITCH
Here you should press your 1616’s reset switch, and dial up the correct ‘test’ on part
of the DIL switch (SW2). There are four tests, (labelled 0 to 3) however as there is
only one section of DIP switch available, the tests are selected by toggling the switch
after a reset.

The switch should be ‘on’ (closed) at reset to start test 0. Switching it ‘off’ then starts
test 1, ‘on’ next starts test 2, while ‘off’ again starts test 3. Full details of the switch
settings and their functions are given in appendix B. An assembly source listing for
the Z80’s test code is given in appendix C.

 Construction: Part 2 Disk Co-processor 7-1

Step 8
Z80 CPU timing
POWER OFF

Solder in the 16 MHz oscillator (OSC), being careful to get it the correct way round.
Match the small dot identifying pin 1 of the oscillator with the corresponding white
dot on the PCB.

INSERT Socket Part Function
U7 74F74 Dual D flip flop (marked 74LS74 on some boards)

VERIFY () U7/3 16MHz
() U7/5 8MHz

Notes This verify instruction means you should verify pins 3 and 5, of the 74F74 integrated
circuit you just plugged in to position U7, are oscillating. The pins are numbered anti-clockwise
from the notch, starting at pin 1, which is to the left of the notch (we mention this in case all
your clocks are digital!)

The 16MHz and 8MHz indicate which signal you are checking. The name used will usually
correspond with that used in the schematic, and in the earlier explanatory notes about the circuit.
In all cases, the name will be derived from the function of the circuit being tested.

Verification can only be done while power is on. The signals you are verifying in this test can
be best examined using an oscilloscope with a 20 MHz bandwidth. If you don’t have easy access
to one, continue to the next test.

PROBLEM
If something is not working suspect U7 or OSC.

Step 9
Processor and decoding
POWER OFF

Set SW1 for the size of the EPROM (U3) being inserted, as tabled in appendix B.
This will almost always be a 27256, in which case SW1 must be ON (closed).
Ensure that SSDCC SW2 is ON, or in test mode.
This section includesserveral changes to the test switch settings, followed by
checking of the SSDCC LED, or of signal levels. Be careful you don’t skip any of
the sections labelled SWITCH or VERIFY.

INSERT Socket Part Function
U3 27256 EPROM
U4 Z80H CPU
U6 74LS74 Dual D flip flop
U8 16L8 ZPAL Z80 decode (may be tagged as ZPAL or U8)
U11 74LS04 Hex inverters
U13 74LS138 3 to 8 line decode
U15 74LS244 Tri state octal buffer
U16 74LS273 Octal latch
U22 74LS244 Octal buffer

VERIFY () LED1 on the disk controller board should glow dimly, indicating that
SSDCC test 0 is running. This tests the CPU, EPROM, address decode and support
circuitry. U15 isn’t needed at this point, except for allowing the test results to be
indicated on the LED (early manuals inserted it too late in the test proceedure, leading
to failure of the tests).

7-2 Disk Co-processor Construction: Part 2

PROBLEM
If the LED does not glow (or for peace of mind, even if it does):
Check the orientation of the LED, and that it is functional.
Check that /NMI (U4/17), /INT (U4/16) and /BUSRQ (U4/25) are high.
Check that /RESET (U4/26) goes low when the 1616’s reset switch is pressed.
Check that /MREQ (U4/19) is pulsing.
Check that /IORQ (U4/20) is pulsing.
Check that /WAIT (U4/24) pulses low during I/O reads and writes, and during ROM
reads.
Double check that SW1 is correctly set for your type of EPROM (ON for 27256).
Suspect U3, U4, U6, U8, U11, U13, U16.
Check for opens, shorts, interconnections, etc on the Z80’s control, data and address
buses.

VERIFY () U8/18 /SCCCS Pulsing low
() U8/19 /SCSICS Pulsing low
() U8/17 /FDCCS Pulsing low
() U8/16 /ROMSEL Pulsing low
() U13/12 /ZWRDAT Pulsing low
() U13/13 /ZINT Pulsing low
() U13/14 /LATCHW Pulsing low
() U13/11 /PORTR Pulsing low

Some logic probes maysimply show these linespulsing, and not indicate them pulsing
low. U8/16 /ROMSEL may only show low. You probably should obtain a better
quality logic probe!

PROBLEM
Suspect U8, U13. Trace back to U4.

SWITCH Select SSDCC test ‘1’, by switching SW2 OFF (that is, SW2 was ON at
reset or power up, and is now switched OFF). This test makes the LED pulse
irregularly, at about 2 to 3 times a second.

VERIFY () U4/22 /WR Pulsing low
() U1/20 /SRAM0SEL Pulsing low
Check that the Z80’s (U4) address lines (A0-A15) are all pulsing low. These are pins
30 to 40, and pins 1 to 5.

PROBLEM
Suspect U4, U8.

Step 10
Z80 RAM
POWER OFF

Ensure switch SSDCC SW2 is ON for test mode.
This section tests RAM, and other Z80 functions. Ensure that you do not skip any
sectioned labelled SWITCH or VERIFY.

INSERT Socket Part Function
U1 6264 8k RAM (part number will often vary)

If you have additional memory chips, or 32k RAM, these may be added once the
SSDCC has been built and completely tested. There is no additional jumpering or
software required when adding extra RAM.

 Construction: Part 2 Disk Co-processor 7-3

VERIFY () LED1 on the disk controller board should glow dimly, indicating that
SSDCC test 0 is running.

PROBLEM
Suspect U1.

SWITCH Select SSDCC test ‘2’, by switching SW2 OFF, then ON. Remember
that SW2 should have been ON at reset or power up, and is now turned OFF, then
ON, to cycle through to test ‘2’.

VERIFY () LED1 on the disk controller board should flash, somewhat irregularly, at
about 2 to 3 times a second, indicating that SSDCC test 2 is running. This test writes
$5A to RAM location $6000, then reads it back and echoes the value to the latch
(U16, 74LS273).

PROBLEM
Suspect U1.
Check for opens, shorts, interconnections, etc on the Z80’s control, data and address
buses.

SWITCH Select SSDCC test ‘3’, by setting SW2 OFF. That is, from a reset or
power up while SW2 is ON, switch it OFF, ON, OFF.

VERIFY () LED1 on the disk controller board should flash faster than test ‘2’,
indicating that SSDCC test 3 is running. Flash rate is about 6 per second.

PROBLEM
Suspect U1.
Check for opens, shorts, interconnections, etc on the Z80’s control, data and address
buses.

Step 11
1616 interface
POWER OFF

Ensure switch SSDCC SW1-2 is ON for test mode.
This section tests the interface to the 1616 motherboard. Again ensure that you do
not skip any section marked SWITCH or VERIFY.

INSERT Socket Part Function
U14 74LS74 Dual D flip flop with clear
U17 74LS74 Dual D flip flop with clear
U18 74LS74 Dual D flip flop with clear
U24 16L8 SPAL 68000 decoding PAL (may be marked SPAL or U24)
U25 74LS30 8 input NAND gate
U26 74LS30 8 input NAND gate
U28 74LS374 Tri state octal latch
U29 74LS374 Tri state octal latch

VERIFY () LED1 on the disk controller board should glow dimly, indicating that
SSDCC test 0 is running.

Since enough of the PCB is now running for the Applix 1616 to identify it, you will
probably get error messages such asDisk controller timeout , and/orNo TXRDY:
Command $0Bon your display. This is perfectly normal at this stage.

7-4 Disk Co-processor Construction: Part 2

PROBLEM
Suspect U14, U17, U18, U24, U25, U26, U28, U29.
Check for opens, shorts, interconnections, etc on the Z80’s control, data and address
buses.

VERIFY () Type the 1616/OS commandMDB FFFFC1 FFFFC1.
This should produce a line like
-00FFFFC1 -E2 ->_<-
The value -E2 will probably be different each time.

PROBLEM
If this generates a bus error then suspect U25, U26 or U24.

SWITCH Select SSDCCtest ‘0’ by closing SW1-2 and resetting the1616. Amongst
other things this test writes bytes to the ports which the SSDCC’s Z80 uses to com-
municate with the 1616.

VERIFY () Enter the 1616/OS commandMRDB FFFFC1. This continually dumps the
contents of the data latch, U28, which is being written by the Z80; the displayed 2
digit number should be rapidly changing. Use to stop the test.

PROBLEM
If something is amiss, verify that the Z80 is running test 0. If so, then edit, assemble
and execute the following 1616 assembler program:

org $4000
004000 1038FFC1 loop: move.b D0,$FFFFC1
004004 60FA bra loop

end

When this program is running, verify that /SRDDAT (U24/14) is pulsing low,
enabling U28 onto the 1616 data bus.
Suspect U18, U24, U25, U26, U28.

Step 12
Disk interface
POWER OFF

Switch SSDCC SW1-2 OFF. This time you arenot running a test. This time you
try to get the disk drive working.

Note that more things can go wrong at this stage than at any other. Most of the things
that go wrong are due to the disk drive not being set up correctly. Unfortunately,
since almost any disk drive can be used, this is an area in which this manual is of
least help to you.

INSERT Socket Part Function
U19 74LS38 Quad 2 input NAND
U20 74LS32 Quad 2 input OR gate
U21 74LS06 Hex inverters (open collector) (may be 7406)
U23 WD1772 Disk controller

Set up your disk drive for use as drive 0 (usually by jumper to D0, as per your disk
drive manual).

Ctrl c

 Construction: Part 2 Disk Co-processor 7-5

If you do not have a disk drive manual, look on the drive for a small switch, or set of
jumpers marked with some indication like "D0 D1 D2 D3" (or possibly "D1 D2 D3
D4"). The first disk drive in your system should have a header across the jumpers
marked "D0". The second disk drive shouldhave theheader across the jumper marked
"D1".

Many drives have a "Ready" line jumper, which sometimes must be moved.

The last (or only) drive should have a termination resistor in place. Look for a header
marked with something like ‘Term’, and ensure it has a jumper. This is almost always
present on 5.25 inch drives, and is essential. It is often not present in 3.5 inch drives,
and does not appear to matter as much here. If you can’t find it, try powering up
without it.

Connect up the disk signal and power cables to your disk drive. You must be careful
to connect these cables the correct way round. The four wire power cable should
only fit one way. The 34 way data cable connectors usually have a plastic step in the
middle, that fits in a corresponding cutout in the connectors on your PCB and your
drive. If not, one edge of the cable should have a wire marked differently to the rest
(usually a red or blue stripe). This edge should go to pin 1 of each connector, so look
on your PCB and your drive for markers indicating pins 1 and/or 34.

Write protect the Applix 1616/OS disk supplied with your SSDCC, by opening its
write protect hole if it is a 3.5" disk (or taping over the write protect notch if it is a
5.25" disk).
Note that you must use a bootable Applix disk (such as the User Disk supplied with
your SSDCC) for tests.
Put the disk into the disk drive which is set up as drive 0. (Incidently, there is a very
slight possibility of accidently damaging a disk if it is completely in the drive at the
moment you power up, so theUsers Manualrecommends waiting a moment after
power up before inserting the disk ... for these tests, take a chance, and put the disk
in before powering up.)

VERIFY () A sign-on message should indicate that the 1616 - Z80 communications
are correctly established; the disk controller ROM version is displayed. If the disk
drive usage light comes on and no horrifying messages emerge, then all is probably
well.
() Exercise your disk system by formatting blank disks, copy files to /RD
and making a backup copy of the 1616/OS disk provided.
If you happen to have extra RAM chips, or wish to use 32k RAM, this can be added
once the SSDCC has passed these tests.

PROBLEM
If an error such as ‘NO RDY’ comes out then a probable culprit is the disk drive
strapping (drive number, or termination usually).
Check also the disk drive power supply and signal cabling.
Suspect U19, U20, U21, U22, U23.

7-6 Disk Co-processor Construction: Part 2

8
SSDCC Software

Interprocessor Communication

So far this manual has dealt with the internal actions of the SSDCC disk controller. Normally
you will use the high level commands provided by 1616/OS, or the varioussyscalls. However,
to ease testing of the controller, the 1616 can send a number of middle level commands. These
commands will be recognised by the SSDCC. The results of the command (or an error code)
will be returned to the 1616.

The command port is located in the 1616 address space at $FFFFD1. Send the command byte
to $FFFFD1. Then write the rest of the command parameters to the data port at $FFFFC1. Error
messages or results appear on the data port.

The interprocessor communication commands are detailed below. Additional commands are
available when using SSDCC cards equiped with the SCSI hard disk upgrade ROMS. In this
description data going from the Z80 to the 1616 is represented in angled brackets: < >.

Abort 00

This command should not be used, and generally merely aborts.

Block read command 01
unit, blockhigh, blocklow,
<errorcode or 0> <1024 bytes>

The 1616 writes a $01 to the command port at $FFFFD1, after which it writes the following
bytes to the data port at $FFFFC1: The unit number (0 for drive 0, 1 for drive 1), the block
number (high byte first). After this the physical read is performed by the Z80 and an error code
is returned to the 1616. If the errorcode is zero, the 1616 may read out the 1024 bytes of data.

A non-zero error code indicates that something went astray; an interpretation of the error code
may be obtained with command 3 (see below).

Block write command 02
unit, blockhigh, blocklow, data
<errorcode or 0>

Similar to the block read command, except that the 1024 data bytes are sent to the Z80 and then
the 1616 must wait for the physical write to complete before an error code is returned.

Display error message command 03
errorcode
<string> <0>

The Z80 is sent the error code byte. The Z80 then sends down a string for human interpretation,
terminated by a zero byte. The various strings have differing lengths.

 SSDCC Software Disk Co-processor 8-1

Format command 04
unit $B5 $7E ntracks skewtable
<errorcode or 0>

To physically format a disk, the 1616 selects command 4. After this send the unit number (0
or 1), and write the values $B5 and then $7E to the data latch as a check against accidental
issuing of format commands. Follow this with the number of tracks on the disk (usually 80 or
40), then the 10 byte sector skew table. Wait for an error code.

The sector skew table consists of two consecutive 5 byte tables. The first is for side 0 of the
disk, the second for side 1. All sectors receive the same interleave pattern with this format
command. The Z80 driver code expects sectors to be numbered from 1, not from 0. The skew
table sent by theblockdev.xrel utility program is:

Side 0 1, 4, 2, 5, 3
Side 1 3, 1, 4, 2, 5

Format type 2 command 05
unit number

This format command permits interactive track-by-track formatting and sector skewing. Its use
is not documented by Applix, and it can be considered abandoned by them for the moment.
However it is used by Greyham Stoney’s software for special formats.

Flush buffers command 06
Flushes the disk buffers, if any. No action if there are no buffers. If there is no action for a few
seconds, check for a changed disk.

Read Z80 RAM command 07
Z80addrh, Z80addrl, lengthh, lengthl
<data>

This command permits the 1616 to read ‘LENGTH’ bytes of the Z80’s memory, starting from
the specified Z80 address.

Write Z80 RAM command 08
Z80addrh, Z80addrl, lengthh, lengthl, data

This command permits the 1616 to write ‘LENGTH’ bytes to the Z80’s memory, starting at the
specified Z80 address.

Call a Z80 program command 09
Z80addrh, Z80addrl

This command causes the Z80 to perform a ‘CALL’ instruction to the supplied address. Upon
return from the called program the Z80 resumes normal operation.

8-2 Disk Co-processor SSDCC Software

Read Z80 ROM version command 0A
<ROMversion>

The Z80 returns a version byte for its current ROM.

O/S version byte 0B
Version byte

1616/OS tells the disk controller which version it is.

Set floppy disk step rate command 0C
unit, rate

This command is used to change the floppy disk(s) head step rate, to suit slower drives, as
follows:

Value Step rate used

0 2 ms.
1 3 ms.
2 6 ms. (default)
3 12 ms.

You may notice that this does not correspond with the step rates quoted in some WD1772
specification sheets. The specification sheets are wrong.

Disk change detect 40
unit number

The 1616 sends this command ($40, or 64) when it detects a change of disk in the unit. This is
sent only if the disk controller EPROM > version 1.4.

Error messages produced by the disk controller software
The disk controller software produces various error messages. Some are first detected by the
1616’s processor and the error messages for these are produced by the 1616/OS block driver
software. Other errors are detected by the Z80 and are reported to the 1616 by means of an error
code; when the 1616 encounters such an error code it fetches an English language interpretation
of the error code from the Z80 and displays it. For test purposes, you may note that Greyham
Stoney’s shareware software includes very extensive error testing and error messages.

Error messages produced by the Z80
These refer to disk I/O failures of various forms.

Seek failure
A particular cylinder cannot be found; possibly because the disk drive has the incorrect number
of tracks, or the disk is incorrectly formatted or poorly calibrated.

 SSDCC Software Disk Co-processor 8-3

Drive busy(1)
Drive busy(2)
The WD1772 is permanently busy and cannot be interrupted out.

Write error(n) NN
Read error(n) NN
These refer to errors detected during physical reading and writing. The second number NN is
a copy of the WD1772 status register at the time of detection of the error.

Format error
The WD1772 reported an error during disk formatting

No RDY signal
The /RDY signal from the disk drive (pin 34 of the 34 way signal cable) does not go low. This
may be due to a cabling problem, incorrect disk drive strap setting or the absence of the selected
drive.

Bad error number
This is the message string which the Z80 returns when asked to interpret an unimplemented
error code. This usually means the disk controller was producing garbage.

Error messages produced by 1616/OS
These messages are produced by that section of 1616/OS which handles the communication
with the disk controller - the /F0 and /F1 block device drivers. They generally indicate that
something untoward has happened in the communication between the two processors, such as
the Z80 coming unstuck.

Disk controller timeout
This means that the Z80 failed to respond in any way to a command which was sent to it.

No TXRDY: Command = $NN
When attempting to send the command NN to the controller’s command port the 1616 could
not detect a true level on the STXRDY handshake signal, meaning that the Z80 is probably
ignoring its command port.

Using 1616/OS with multiple block devices
1616/OS is designed to support multiple block devices. Until Version 2 the only block device
was the RAM disk, so the problem of specifying separate devices did not arise. With Version
4, you have available sixteen different block devices, normally:

/RD The RAM disk
/F0 Floppy drive 0
/F1 Floppy drive 1
/H0 Hard drive 0
/H1 Hard drive 1

etc.

8-4 Disk Co-processor SSDCC Software

Size limits are set for hard disks, mostly due to the RAM memory required by the bit maps. /H0
can be up to 40 megabyte, /H1 and others, up to 8 megabyte. An MRD is provided on the hard
drive users disk for /H2, and /H3. If you require different size facilities, they should be provided
by altering the MRDs.

The concept of a filename is extended to include a specification of the block device upon which
the file is saved. This is done by prepending the block device driver’s name onto the normal
filename. For example:

/F0/myfile is a pathname for a file on floppy 0.
/rd/MF2 is a pathname for a file on the RAM disk.

You may specify a pathname of this type wherever a normal filename is expected. Files whose
names are given without a block device identifier are assumed to reside on the currently logged
device.

The currently logged device is identified in the 1616/OS command line prompt. Initially this
is the RAM disk (/RD). You can change the default block device by typingcd followed by its
identifier. For example, typingcd /rd logs onto the RAM disk,cd /f1 logs onto floppy disk
drive 1, etc. Floppies may be changed without any need to inform the system (it will detect the
change). Swapping floppies when files are still open will have predictably disastrous results.

 SSDCC Software Disk Co-processor 8-5

9
Disk Organisation

A block device such as a floppy disk consists of the
• root block (block 0)
• block usage bitmap
• boot block
• root directory
• actual storage area.

Note that a ‘block’ is a 1024 byte unit of data.

The root block
The organisation of data on 1616/OS block device volumes such as the RAM disk and the
floppies is determined by fields in the device’s block zero, referred to as the ‘root block’.

The root block is always at block zero of a device. The root block structure defines the structure
of the disk. It contains the following fields:

Offset Size Name Usage

0 ushort NBLOCKS Number of 1024 byte blocks on device (normally
800 for floppies).

2 ushort SSOSVER Version of 1616/OS under which the device was
initialised ($30) for Version 3.

4 ushort BITMAPSTART The block at which the device block usage bitmap
starts (usually $01).

6 ushort DIRSTART The block where the root directory starts (usually
$03).

8 ushort NDIRBLOCKS The number of blocks in the root directory (usually
$07).

10 ushort REMOVABLE Non-zero (usually $01) if the media is removable
(that is, a floppy).

12 ushort BOOTBLOCK Number of block which contains boot code, to be
loaded into memory and executed at reset time
(usually $02).

14 ulong SPECIAL Randomised number for distinguishing disks one
from another.

18 64 bytes ROOTDIR A directory entry which describes the root direc-
tory.

In detail:

NBLOCKS
The number of blocks on the device. This is read when the disk is logged. If
a disk with a certain number of blocks is inserted into a drive which previously
contained a disk which had a different number of blocks, the change is detected.

 Disk Organisation Disk Co-processor 9-1

SSOSVER
This is the 1616/OS version number of the disk. The disk structure has changed
slightly in the change from 1616/OS V2.4 (version = $24) to 1616/OS version
3.0 (version = $30).

BITMAPSTART
The number of the block at which the block usage bitmap commences.

DIRSTART
The number of the block at which the root directory commences. This field
duplicates the BLKMAPBLK entry in the root directory entry ROOTDIR, but
has been kept so that 1616/OS V3.0 disks may be read under 1616/OS V2.4

NDIRBLOCKS
The number ofblocks in the root directory. This field duplicates theFILE_SIZE
entry in the root directory entry ROOTDIR, but has been kept for 1616/OS
V2.4 compatibility.

REMOVABLE
This flag is non-zero if the media is removable and the system has to check for
swapped disks. There is a performance benefit when using non-removable
media; in fact a floppy may be defined to be non-removable. If this is done the
system must be reset when the floppy is replaced.

BOOTBLOCK
Contains the number of the block which is read in to memory at $3C00 when
booting from disk. If this field is zero then no boot code exists.

SPECIAL
A randomised number which is (hopefully) unique for every disk. The system
inspects this field and the DATE field in the root directory entry ROOTDIR
for a change which indicates a disk swap.

ROOTDIR
This is a standard 64 byte directory entry. It describes the root directory of the
disk, so bit 1 of the STATBITS field is set. The DATE field in this directory
entry represents the date of creation of the volume and is also used for detecting
disk swaps.

The block usage bitmap
Every block device has a bitmap associated with it. This records which blocks are currently
used, and which are free to be used.

The bitmap is a sequence of bits. A one means that the corresponding block is used; a zero
indicates that it is free. The most significant bit (bit 7) of the first byte in the bitmap corresponds
to block 0; bit 6 of byte 0 corresponds to block 1, etc. The bitmap may extend over more than
one block: one block contains 8192 bits, so one block of bitmap is needed for every 8 megabytes
in the disk.

The BITMAPSTART field in the root block identifies the block at which the bitmap starts. If
the bitmap is more than one block long, all the blocks must be contiguous, starting with the
block identified by BITMAPSTART. The system uses the NBLOCKS field to calculate how
many blocks are contained in the bitmap.

The bitmap usually starts at block 1 of a disk. It occupies however many contiguous blocks are
required, based upon the number of blocks on the device.

9-2 Disk Co-processor Disk Organisation

The boot block
The boot block contains the boot program which the system executes at address $3C00 every
time the system is reset.

The BOOTBLOCK field indicates whether or not the disk contains a boot block to be loaded
at reset time and, if so, what block it is. Whenever the 1616 is reset (by powering on, pressing
the reset switch or by ALT-control-R) the operating system performs all initialisation and then
goes through all the block drivers in order (/RD first, then /F0 then /F1 then any others) looking
for a device with its BOOTBLOCK field in the root block non-zero. When such a device is
found the indicated block is loaded into memory and executed at address $3C00 in the 1616.

The current level of the reset (0, 1 or 2) and the block driver number from which the system is
booting are passed on the stack at 4(sp) and 8(sp) respectively. This allows the boot code to
perform whatever level of initialisation is needed.

Note that the ram disk may be used in this manner as a boot device. In the ram disk, Block 1
is the bit map block (rdbitmapblock), while Block 2 (rdcksmblk) contains the ram disk checksums.
Block 4 is normally the first directory block in a ram disk, and four kbytes (enough for 64 files)
are normally defined. Eight blocks are reserved when a ram disk is established.

Block 3 in the ram disk is reserved for booting, however it is not normally used. To use it, read
in the root block, set the BOOTBLOCK field to 3, write out the root block again and then put
your boot code in block 3. Remember that the 1616/OS OPTION 8 must be set to write enable
the system tracks of a block device.

If the disk in drive 0 (/F0) does not contain a boot program then the system will attempt to boot
from disk 1 (/F1). If there is no second disk or if the second drive has no disk in it then the
attempt to read from the second disk will fail, taking a few seconds to time out. Look in the
/sys directory of the 1616/OS user release disk for the filebootv3.exec or bootv3 . This is the
standard boot code. By changing thebootv3.s code, and assembling, you can readily alter
what happens upon boot. An easy example would be changing the startup file name from
autoexec.shell to hello.shell .

You can arrange to boot from the hard disk before searching for disks in drives /F0 and /F1. If
DIP switch 2 (counting from 0) on the 1616 motherboard is open (off), and you have Version
4 ROMS, the 1616 will attempt to boot in the order /H0 /RD /F0 /F1 /H0 /H1 (this simply adds
/H0 in front of the standard boot order).

The root directory
The disk root directory is a number of blocks reserved for the home directory of the disk. On
floppies theblockdev.xrel program sets this up. The root directory should start after the root
block, bitmap block and boot block.

The directory
The directory lies from the block indicated by ‘DIRSTART’ up to ‘DIRSTART + NDIRB-
LOCKS - 1’. The 64 byte directory entry is as follows:

 Disk Organisation Disk Co-processor 9-3

Offset Size Name Usage

0 32 chars FILE_NAME 32 byte null-terminated name

32 8 char DATE File creation date (yy/mm/dd/hh/mm/ss).

40 ushort UID User ID code

42 long LOAD_ADDR Load address of.exec file

46 long FILE_SIZE Length of file/No of dir blocks

50 word STATBITS Status bits, file attribute bits

52 short BLKMAPBLK The block which contains the file’s block map
block / directory start block

54 short MAGIC $d742 (42 is Version 4.2)

56 4 words FFB First four blocks of file

FILE_NAME
is the name of the file/directory which this directory entry describes. It contains
no "/" characters. It is in upper case and should contain no control characters.
The following characters may be used in file names: 0-9 @ A-Z. This is only
enforced upon creation of the file (in thecreatandrenamesystem calls) so that
any existing files which do not conform to this standard may be read, copied,
executed or renamed.

If the first entry in this field is zero then the directory entry is not used. When
a file is deleted by theunlink system call, the file’s blocks are released and the
first character of its filename is copied to the end of the file name (31 bytes in,
which usually contains 0) before the first character is set to zero. This permits
files to be un-deleted - the results may not be good if the disk has been written
to since the file was deleted. Runfscheck.xrel across a disk after un-deleting
a file.

DATE
is the date of modification of the file/directory which this directory entry
describes. Adding new files to a directory does not affect the date in the
directory’s directory entry.

UID
one of 64k users. User 0 has all rights; any other user can be restricted.

LOAD_ADDR
is the address at which.exec files are to be loaded and executed. It is set to
zero for other types of file.

FILE_SIZE
has a different meaning depending upon whether the directory entry describes
a file or a directory. If it describes a file, the FILE_SIZE field contains the
length of it in bytes. If the directory entry describes a directory (sub-directory),
then the FILE_SIZE field contains the number of 1024 byte blocks which the
subdirectory occupies. These blocks are contiguous for all directories.

STATBITS
contains file attribute bits. The following bits are defined:

Bit 0 If set, the file has been backed up somewhere.

Bit 1 If set, this directory entry describes a directory

9-4 Disk Co-processor Disk Organisation

Bit 2 If set, the file/directory described by this directory entry cannot be modified.

Bit 3 If set, Read permissions are ON for users with ID’s other than 0.

Bit 4 If set, Write permissions are ON for users with ID’s other than 0.

Bit 5 If set, eXecute permissions are ON for users with ID’s other than 0.

Bit 6 If set, a symbolic link has been made.

Bit 7 If set, ffblocks (last 4 words) are valid address of file contents.

BLKMAPBLK
fielduse depends upon whether thedirectory entrydescribes a file oradirectory.
If it describes a file, then the BLKMAPBLK field contains the number of the
block which contains a list of the blocks occupied by this file, in the order used.
If the directory entry describes a directory (sub-directory), then the
BLKMAPBLK field contains the number of the block at which the sub-di-
rectory’s contents start.

MAGIC
If the magic number $d742 appears, it indicates that the last four words in the
directory entry point to the blocks occupied by the contents of the file. The
1616/OS version number under which the file was created is also indicated (in
this case, Version 4.2).

FFBLOCKS
Pointers to the block numbers of up to four blocks containing the contents of
the file described by the directory entry. This avoids looking at the disk
blockmap, but only works on files less than 4k long.

The 1616 disk drive utility program
Initialising block devices

The programblockdev.xrel permits the initialisation of block devices, formatting of floppies
and the conversion of 1616/OS V2.X disks to 1616/OS V3.0

To run this program type
blockdev devname

Wheredevname is the name of the device (/F0, /F1, etc) which you wish to format, initialise,
etc.

There are three levels of disk preparation available with this program. The most basic level is
to simply alter the disk’s boot sector program; you enter the name of the new boot program and
this is written onto the disk. If no boot program exists on the disk then the disk is skipped in
the booting sequence.

In the next level of disk preparation you may ‘initialise’ a disk. This recreates the disk’s root
block, bitmap and directory. All files are lost. The boot block needs to be rewritten after this.

The next level of disk preparation involves a physical format of the disk, followed by initiali-
sation, followed by the boot code setup. This will only work on the /F0 and /F1 devices, since
these are the only physical devices which early versions of this program know how to format.

Another option with this program is to upgrade a disk to 1616/OS V3.0. This alters the disk’s
root block into the correct format. The V2.X directory becomes the V3.0 root directory. The
disk is still readable and writeable under 1616/OS V2.X. This option may be used for altering
a disk’s name, as well as upgrading the version.

 Disk Organisation Disk Co-processor 9-5

10
Appendix A: Connector Pinouts

Floppy disk data connector
(34 way)

Pin# Name Description

1 /EJECT Disk eject signal. (not used but normally still connected)
(output).

2 /DISK CHANGE Disk Change. (not supported on some drives) (output).

4 /INUSE In Use signal line (output).

6,12 /DS3,1 Drive 1 select signal (output).

8 INDEX Disk drive index signal (input).

10 /DS0 Drive 0 select signal (output).

14 N/C Not connected.

16 /MOTORON Motor on signal (output).

18 /DRC Direction select signal (output).

20 /STEP Disk head step signal (output).

22 /WD Write data signal (output).

24 /WG Write gate signal (output).

26 /TRK00 Track 0 signal (input).

28 /WRPT Write protect signal (input).

30 /RD Read data (input).

32 /SIDE Side select signal (output).

34 /RDY Ready signal (input).

3,5,7,9 COM System common ground.
11,13,15
17,19,21
23,25,27
29,31,33

 Appendix A: Connector Pinouts Disk Co-processor 10-1

Hard disk power connector
(closest to C23)

Pin# Name Description

1 +5v +5 volt power supply.

2 COM System common ground.

3 COM System common ground.

4 +12v +12 volt power supply.

Floppy disk power connector
(closest to C21)

Pin# Name Description

1 +5v +5 volt power supply.

2 COM System common ground.

3 COM System common ground.

4 +12v +12 volt power supply.

10-2 Disk Co-processor Appendix A: Connector Pinouts

SCSI connector
(50 way)

Pin# Name Description

2 B0 Data bit 0.

4 B1 Data bit 1.

6 B2 Data bit 2.

8 B3 Data bit 3.

10 B4 Data bit 4.

12 B5 Data bit 5.

14 B6 Data bit 6.

16 B7 Data bit 7.

18 PARITY Data bus parity bit.

20,22,24 COM System common ground.

25, 26 TERMN PWR Normally connected to +5v. (as standard linking on
SSDCC, may need to be cut for some SCSI drives).

28,30 COM System common ground.

32 /ATN Attention signal.

34 COM System common ground.

36 /BUSY Busy signal.

38 /ACK Acknowledge signal.

40 /RESET SCSI bus reset signal.

42 /MSG Message signal.

44 /SEL Select signal.

46 CTRL/DATA’ Control/Data signal.

48 /REQ Request signal.

50 IN/OUT’ Input/Output signal.

All odd number pins (except pin 25) connect to system common ground.

 Appendix A: Connector Pinouts Disk Co-processor 10-3

Serial ‘A’ connector
(default pinouts only, assumes standard strapping)

Pin# Name Description

1 COM System common ground.

2 CTS Clear To Send (input).

3 RTS Request To Send (output).

4 RxD Receive Data (input).

5 TxD Transmit Data (output).

6 +12v +12 volt power supply.

7 -12v -12 volt power supply.

8 DCD Data Carrier Detect (input).

9 DTR Data Terminal Ready (output).

Serial ‘B’ connector
(default pinouts only, assumes standard strapping)

Pin# Name Description

1 COM System common ground.

2 CTS Clear To Send (input).

3 RTS Request To Send (output).

4 RxD Receive Data (input).

5 TxD Transmit Data (output).

6 +12v +12 volt power supply.

7 -12v -12 volt power supply.

8 DCD Data Carrier Detect (input).

9 DTR Data Terminal Ready (output).

10-4 Disk Co-processor Appendix A: Connector Pinouts

Expansion connector pinout

Pin# Name Description

1,2 COM System common ground.

3,4 +5v +5 volt power supply.

5,6 +12v +12 volt power supply.

7 -12v -12 volt power supply.

8 -5v -5 volt power supply.

9,24 D0-D15 Data Bus (D0-D15). Bidirectional, three state data bus.

25 /AS Address strobe. This signal indicates that there is valid
data on the address bus.

26 /UDS Upper Data Strobe. This signal indicates that valid data
is available on data bus bits D8-D15.

27 /LDS Lower Data Strobe. This signal indicates that valid data
is available on data bus bits D0-D7.

28 R/W’ Read/Write. This signal defines the data bus transfer as
a read or write cycle. It also works in conjunction with
/UDS and /LDS.

29 /DTACK Data Transfer Acknowledge. This pin is used by
expansion boards to determine when another board or the
main board has responded.

30 /EXTDTACK External Data Transfer Acknowledge. This open col-
lector signal is used by expansion boards and indicates
that the data transfer is completed. When the processor
recognises /EXTDTACK during a read cycle data is
latched and the bus cycle terminated. When /EXTD-
TACK is recognised during a write cycle, the bus cycle
is terminated.

31 /BG Bus Grant. This output indicates to all other potential bus
master devices that the processor will release bus control
at the end of the current bus cycle.

32 /BGACK Bus Grant Acknowledge. This input indicates that some
other device has become the bus master.

33 /BR Bus Request. This input is wire ORed with all other
devices that could become bus masters. It indicates to the
processor that some other device desires to become the
bus master.

 Appendix A: Connector Pinouts Disk Co-processor 10-5

34 /HALT Halt. When this bidirectional line is driven by an external
device, it will cause the processor to stop at the end of the
current bus cycle. When the processor has been halted
using this input, all control signals are inactive and all
three-state lines are high impedance. When the processor
has stopped executing instructions, such as in a double
bus fault condition, the /HALT line is driven by the
processor to indicate to external devices that the processor
has stopped.

35 /RESET Reset. This bidirectional line acts to reset the processor
in response to an external reset signal. An internally
generated reset (result of a RESET instruction) causes all
external devices to be reset with the internal state of the
processor unaffected. A total system reset results from
external /HALT and /RESET signals being applied at the
same time.

36 /VMA Valid Memory Address.This output is used to indicate to
M6800 devices that there is a valid address on the address
bus and the processor is synchronised to enable (E) signal.

37 E Enable. This signal is the standard enable signal common
to all M6800 devices. The period for this output is ten
MC68000 clock periods (six low; four high).

38 /VPA Valid Peripheral Address. This signal indicates to
expansion boards that the device or region currently being
addressed is a M6800 family device.

39 /BERR Bus Error. This input informs the processor that there is
a problem with the cycle currently being executed.

40 /IPL2 Interrupt Control (/IPL2,/IPL1,/IPL0). These input pins
41 /IPL1 indicate theencodedpriority levelof thedevice requesting
42 /IPL0 an interrupt.

43 /FC2 These function code outputs indicate the state and cycle
44 /FC1 type currently been executed and are valid whenever /AS
45 /FC0 is active.

46-68 A23-A1 Address Bus (A23-A1). This 23 bit, unidirectional, three
state bus is capable of addressing 8 megawords of data.
It provides the address for bus operation during all cycles
except interrupts.

69 /STARTUP Startup. Power on jump signal for use with expansion
cards.

70 /EXTVPA External Valid Peripheral Address. This input indicates
that the device or region addressed is a M6800 family
device and that the data transfer should be synchronised
with the enable (E) signal.

71 /EIRQ0 External Interrupt Request. These decoded inputs are
72 /EIRQ1 usedby expansion boards to generate interrupts. The level
73 /EIRQ2 of the interrupt is determined by the setting of the ‘INT
74 /EIRQ3 LEVEL’on the main board. Only autovectored interrupts

are supported on Rev B 1616 PCBs.

10-6 Disk Co-processor Appendix A: Connector Pinouts

75,76 +5v +5 volt power supply.

77,78 COM System common ground.

79 CLK Clock. 7.5 MHz system clock.

80 30M 30 MHz clock.

 Appendix A: Connector Pinouts Disk Co-processor 10-7

11
Appendix B: Switch and Link Settings

Switches
The SSDCC four-way switch is used to select

• The size of the EPROM used.

• Normal operation, or to test construction of the board.

These functions are assigned as follows:

Switch # Function

SW1 EPROM type

SW2 Normal/Test mode

SW3 Not used

SW4 Not used.

Eprom settings
The SSDCC can be used with 28 pin EPROMS, in sizes ranging from 8k by 8, to 32k by 8. As
the pinouts differ, provision is made to customise the EPROM socket to the EPROM being used
by means of switch SW1-1.

SW1 off (open) 2764

SW1 off (open) 27128

SW1 on (closed) 27256

Normal mode
If, at reset time, SW2 is off (open), then the Z80 drops into its normal operating mode, ready
for disk I/O under 1616/OS.

Test mode switch settings
The construction of the 1616 is aided by its inbuilt diagnostic and test programs. There are four
tests, selected via the input switches. As the disk controller only has one available input bit
(SW2), this is used to select between the inbuilt tests in the following manner:

Selecting the tests
If switch 2 is on (closed) at reset time, then diagnostic test 0 is executed. If the switch is now
turned off, the Z80 drops into test 1. Turning the switch on again invokes test 2, etc. In this
manner any test may be selected by closing the switch, resetting the Z80 and toggling the switch
until the desired test is running. A listing of the Z80 diagnostic code is included as Appendix
C. The tests within the ROM are as follows.

11-1 Disk Co-processor Appendix B: Switch and Link Settings

Test 0 - Incrementing loop

Loop around writing an incrementing value to the SCC, SCSI controller, WD1772, interrupt
latch, data latch, command latch and disk select latch. Flashes the LED very quickly - too
quickly in fact. The following signals should be pulsing low during execution of test 0:

/SCCCS (U8/18)
/SCSICS (U8/19)
/FDCCS (U8/17)
/ROMSEL (U8/16)
/ZWRDAT (U13/12)
/ZINT (U13/13)
/LATCHW (U13/14)
/PORTR (U13/11)

Test 1 - Write to memory

Write one byte value into every location in memory ($0000 to $FFFF). Increment the byte value
and repeat. Flashes LED. Signals which should strobe low during this test include:

A0-A15 (U4)
/WR (U4/22)
/SRAM0SEL (U1/20)

Test 2 - Write to $6000

Continuously write the value $5A to the RAM location $6000, read back and echo to the data
latch. Flashes LED.

This test may be used to debug memory errors. The contents of the data latch may be read from
the 1616 using the command ‘mdb FFFFC1 FFFFC1’

Test 3 - Test RAM

Copy the first 8k of ROM to RAM at $6000, then verify the copy. Flash the LED if all checks
out. If an error is detected, halt tests.

Link (interrupt) settings
The set of links on the SSDCC allow the use of Z80 interrupts. They are normally not connected,
when using floppy disks. If using Version 2.1 of the SCSI drive, pins 3 and 5 are linked. The
pin have the following connections:

Pin 1 Z80 Interrupt pin 16
Pin 2 SD0 Byte from 1616 in SINTZ port has D0 bit 0 low.
Pin 3 Z80 Non-maskable interrupt pin 17
Pin 4 DRQ from FDC WD1772 pin 27
Pin 5 SCSIIRQ from NCR5380 pin 23
Pin 6 /SCCIRQ from Z8530 pin 5

 Appendix B: Switch and Link Settings Disk Co-processor 11-2

12
Appendix C: EPROM startup code

;
; Applix SSDCC ROM assembler startup code
;
; Copyright (C) 1987 by Applix pty limited
;
; Programmer: Andrew K.P. Morton
;
; Look at the ’testmode’ switch. If on, loop around reading and writing
; everything. If the switch is off, jump to the normal operational code.
; Starts at $0000

; I/O addresses

port equ 0 ;Input port
latch equ 8 ;Disk select latch
int equ 10H ;Write: interrupt 1616
clrint equ 10H ;Read: clear pending Z80 interrupt
data equ 18H ;Data I/O port
command equ 1CH ;Command I/O port

scsibase equ 20H ;SCSI controller
fdcbase equ 40H
sccbase equ 60H

;Define bits in the port
testmode equ 8 ;Testmode bit: low = test mode
txrdy equ 4 ;Ready for transmit
rxrdy equ 2 ;Ready to receive
scommand equ 1 ;Command from 1616

;Define bits in the latch
map equ 80H
bank equ 40H
side equ 20H
fmo equ 10H
led equ fmo
ds1 equ 8
ds0 equ 4
eject equ 2
inuse equ 1

diskchng equ 2
rdy equ 1

;Define SCC registers
sccbcont equ sccbase
sccbdata equ sccbase+1
sccacont equ sccbase+2
sccadata equ sccbase+3

;Bits in SCC control register
sccrxrdy equ 1
scctxrdy equ 4

;Define registers in the FDC
fdcstatus equ fdcbase
fdccommand equ fdcbase
fdctrack equ fdcbase+1
fdcsector equ fdcbase+2
fdcdata equ fdcbase+3

drq equ 2

.Z80

.phase 0

12-1 Disk Co-processor Appendix C: EPROM startup code

start: in a,(port)
and testmode
jp nz,100H ;Off to the C code if the switch is off

;Now loop, writing incrementing value to everything

loop1: ld a,b
out (sccbase),a ;The SCC
out (scsibase),a ;The SCSI controller
out (fdcbase),a ;The FD controller
out (int),a ;68k interrupt
out (data),a ;Data latch (clear command bit)
out (command),a ;Set command bit
and 03fh ;Keep BANK & MAP low
out (latch),a

inc b ;New test pattern

in a,(port)
and testmode
jr z,loop1 ;Loop until switch is off

; Drop into the first memory test: write & read every location in memory

ld hl,0
loop2: ld (hl),b ;Write B reg to memory

ld a,(hl) ;Read back into A
inc hl ;Do it for all memory
ld a,h
or l
jr nz,loop2

inc b ;New value

in a,(latch) ;Toggle LED
xor led
out (latch),a

in a,(port)
and testmode
jr nz,loop2 ;Loop until switch is turned on

; New memory test: write repetitively to memory, read back

ld hl,6000h
ld d,5ah

loop3: ld bc,0 ;Loop counter
loop4: ld (hl),d

ld a,(hl) ;Read back from RAM
out (data),a ;Echo to data latch
dec bc
ld a,b
or c
jr nz,loop4

in a,(latch)
xor led
out (latch),a

in a,(port)
and testmode
jr z,loop3 ;Loop until switch is turned off

;
; Memory pattern test: Copy ROM contents to RAM, verify
;

loop5: ld hl,0 ;ROM pointer
ld de,6000H ;RAM pointer
ld bc,2000H ;Counter
ldir ;Bang

 Appendix C: EPROM startup code Disk Co-processor 12-2

ld hl,0
ld de,6000H
ld bc,2000H

check: ld a,(de)
cp (hl) ;Check the memory again.
jr nz,err
inc hl
inc de
dec bc
ld a,b
or c
jr nz,check

in a,(latch)
xor led
out (latch),a
jr loop5

;Come here on error
err: jp err ;Die off

rept 256-$;Pad out to address 100h
db 0
endm

end

12-3 Disk Co-processor Appendix C: EPROM startup code

Index

$00 PORT, 2-2
$0000 ROM address, 2-2
$08 LATCH, 2-2
$10 ZCLRINT, 2-2
$10 ZINTS, 2-2
$18 SDATA, 2-2
$20 SCSIBASE, 2-2
$40 FDCBASE, 2-2
$40 status of drive, 3-6
$41 track register, 3-6
$42 sector register, 3-6
$43 data transfer, 3-6
$60 SCCBASE, 2-2
$6000 local variables, 2-1
$6000 RAM address, 2-2
$7800 stack, 2-1
$7800 user programs, 2-1
$8000 RAM address bank, 2-2
$FFFFC1 ZDATA, 2-4
$FFFFC3 SCLRINT, 2-4
$FFFFC3 SINTZ, 2-4
$FFFFC9 SRXRDY, 2-4
$FFFFCB STXRDY, 2-4
$FFFFCD ZCOMMAND, 2-4
$FFFFD1 SCOMMAND, 2-4

/DISK CHANGE, 2-3
/EJECT, 2-3
/INUSE, 2-3
/MOTORON, 2-3
/READY, 2-3

01 block read, 8-1
02 block write, 8-1
03 error display, 8-1
04 format, 8-2
05 format, special, 8-2
06 flush buffers, 8-2
07 read Z80 ram, 8-2
08 write Z80 ram, 8-2
09 call Z80 code, 8-2
0A ROM version, 8-3
0B O/S version, 8-3
0C step rate, 8-3

1616 changes, 6-1
1616 interface, 2-4
1772 address $40, 2-2
1772 commands, 3-6
1772 FDC, 3-6

3c00, 9-2, 9-3

40 disk change, 8-3

5380 SCSI base address, 2-2

74LS138 U13 decode, 2-1

abort command 0, 8-1
access to Z80, 2-4
active low, 2-1
additional power supply, 1-1
address decode, 2-1
address of I/O, 2-2
assembled kits, 4-1
asserted signal, 2-1
attribute bits, 9-4

backed up bit, 9-4
bad error number, 8-4
BANK, 2-1, 2-2
bank select, 2-1, 2-2
basic kit, 5-1
bit 0 SCOMMAND, 2-2
bit 1 ZRXRDY, 2-2
bit 2 ZRTRDY, 2-2
bit 3 test switch, 2-2
bit patterns disk commands, 3-7
bitmap, 9-2
bitmapstart, 9-1, 9-2
blkmapblk, 9-4
block 3 ram disk, 9-3
block devices, multiple, 8-4
block read 01, 8-1
block usage bitmap, 9-2
block write 02, 8-1
block zero, 9-1
blockdev.xrel, 9-3, 9-5
board modifications, 6-2
boot block, 9-3
boot sector, 9-5
boot3v.exec, 9-3
bootblock, 9-1, 9-3
built and tested, 4-1
busy, drive, 8-4
busy bit, 3-9
busy bit $0, 3-6
byte timing, 3-5

cache, Greyham Stoney, 1-2
call Z80 code 09, 8-2
capacitor list, 5-1
cassette, 1-1
change disk, 2-3
change disk 40, 8-3
chip damage from static, 6-2

Disk Co-processor i

clear interrupt $10, 2-2
clock cycles, 2-3
command code, 3-1
command flag, 2-5
command port, 8-1
commands WD1772, 3-6
communication between CPUs, 8-1
compatibility, 9-2
Conal Walsh, 1-2
connector parts list, 5-3
connectors, 10-1
construction, 4-1
controller chip, 3-6
converting to v3, 9-5
cost of SCSI, 1-1
CP/M, 1-2
CPU control, 3-4
CRC error bit, 3-9
CZ PAL, 1-2

data port $18, 2-2
data separators, 3-6
data transfer rate, 3-4
date, 9-4
dBase II, 1-2
DC motor, 3-3
decode 74LS138 U13, 2-1
delete, 9-4
design overview, 2-1
diagnostic test bit, 2-2
diagnostic Type III, 3-7
direct access to Z80, 2-4
directory bit, 9-4
directory structure, 9-3
dirstart, 9-1
disk change, 2-3
disk change 40, 8-3
disk command bit patterns, 3-7
disk controller chip, 3-6
disk controller timeout, 8-4
disk copy, fast, 1-2
disk organisation, 9-1
disk select latch, 3-10
disk select latch $08, 2-2
display error 03, 8-1
double density, 3-6
drive busy, 8-4
drive capacity 800k, 3-2
drive controller commands, 3-6
drive electronics, 3-3
drive mechanics, 3-3
drive motor, 3-3
drive recommended, 3-1
drive rotation, 3-3
drive select latch, 2-3
drive sizes, 8-5

drive speeds, 3-4
drive types, 3-2

electronics experience, 4-1
electronics in drive, 3-3
error display 03, 8-1
error messages, 8-3
error number bad, 8-4
expansion, 1-1
expansion socket, 6-1

fast disk copy, 1-2
FDCBASE $40, 2-2
FFB, 9-4
file_name, 9-4
file_size, 9-4
file attributes, 9-4
filename, 9-4
fix it guarantee, 4-1
flags, disk commands, 3-8
floppy disk address, 2-2
floppy disk system, 3-1
flush buffers 06, 8-2
forced interrupt, 3-7
format, 9-5
format, Greyham Stoney, 1-2
format 04, 8-2
format byte pattern, 3-9
format disk, 3-7
format error, 8-4
format floppies, 9-5
format information, 3-4
format special 05, 8-2
fragmentation, 3-5
fscheck.xrel, 9-4

Greyham Stoney, 1-1
guarantee to fix it, 4-1

hard disk manual, 1-2
head load, 3-5
head settle bits, 3-8
hints and tips, 6-1
Harvey, Mark, 1-1

I/O address, 2-2
I/O space, 2-1
inactive state, 2-1
index bit, 3-9
index hole, 3-4
initialise, 9-5
input port, 2-2
input port $00, 2-2
integrated circuits list, 5-2
interprocessor communication, 8-1
interrupt 1616 $10, 2-2

Disk Co-processor ii

interrupt level 1, 2-3
interrupts, 2-3

LATCH $08, 2-2
LED, 2-3
load_addr, 9-4
local variables $6000, 2-1
locked file, 9-5
logged drive, 8-5
low level drivers, 1-2

MAGIC, 9-4
major sections, 2-1
manufacturers notes, 1-2
MAP, 2-1
MAP not used, 2-2
Mark Harvey, 1-1
maskable interrupt $7800, 2-3
mechanics of drive, 3-3
memory map, 2-1
MFM data, 3-6
Microbee, 1-2
modifications to board, 6-2
Morton, Andrew, 12-1
motor in drive, 3-3
motor on bit, 3-9
MS-DOS, 1-2
multiple block devices, 8-4

nblocks, 9-1, 9-2
NCR 5380, 1-2
NCR5380 SCSI base address, 2-2
ndirblocks, 9-1
necessary tools, 4-2
negated signal, 2-1
new builders, 4-1
NMI, 2-3
no RDY signal, 8-4
no TXRDY, 8-4

O/S version 0B, 8-3
operating system version, 6-1
option 8, 9-3
organisation of disk, 9-1

PAL description, 2-4
PAL U8 ZPAL, 2-1
parts list, 5-1
PAT, 4-1
pathnames, 8-5
pinouts of connectors, 10-1
polarised components, 6-1
PORT $00, 2-2
progressive assembly, 4-1

RAM address $6000, 2-2

RAM address $8000, 2-2
RAM disk, 8-5
RAM testing, 7-3
RAM0 access, 2-2
RAM1 access, 2-2
RDY signal, none, 8-4
read address, 3-7
read error, 8-4
read sector, 3-7
read track, 3-7
read write sector Type II, 3-7
read Z80 ram 07, 8-2
recommended drive, 3-1
removable, 9-1
required tools, 4-2
reset, 9-3
reset level, 9-3
resistor list, 5-1
restore command, 3-7
ROM address $0000, 2-2
ROM version 0A, 8-3
root block, 9-1
root directory, 9-3
root program, 9-3
rootdir, 9-1
rotation of drive, 3-3
RS232 base address $60, 2-2

SCCBASE $60, 2-2
SCLRINT $FFFFC3, 2-4
SCOMMAND $FFFFD1, 2-4
SCOMMAND bit 0, 2-2
SCSI, 1-1
SCSI, cost of, 1-1
SCSI base address, 2-2
SCSI interrupts, 2-3
SCSI parts list, 5-3
SCSIBASE $20, 2-2
SDATA $18, 2-2
sector register $42, 3-6
sector size 1024, 3-4
sector skew, 3-5
seek command, 3-7
seek failure, 8-3
select disk latch, 3-10
select drive latch, 2-3
select drive latch $08, 2-2
select side, 2-3
separate memory and I/O, 2-1
serial ports, 1-1, 1-2
serial SCC address $60, 2-2
Shareware Disk #7, 1-1
side select, 2-3
single density, 3-6
SINTZ $FFFFC3, 2-4
skew sector, 3-5

Disk Co-processor iii

socket list, 5-3
sockets, use of, 6-1
software, 8-1
soldering, 6-2
special, 9-1
SRXRDY, 2-4
SRXRDY $FFFFC9, 2-4
ssosver, 9-1
stack $7800, 2-1
stat_bit, 9-4
static, care, 6-2
status of drive $40, 3-6
status register bits, 3-9
step-in command, 3-7
step-out command, 3-7
step command, 3-7
step pulse, 3-4
step rate 0C, 8-3
step rate bits, 3-8
stepper motor, 3-3
Stoney, Greyham, 1-1
strapping block, 6-5
STXRDY, 2-4
STXRDY $FFFFCB, 2-4
subdirectory, 9-4
suggested drive, 3-1
switch for test, 7-1
sys directory, 9-3
system tracks, 9-3

test 1616 interface, 7-4
test and verify, 7-1
test disk interface, 7-5
test switch bit 3, 2-2
test timing, 7-2
test using switch, 7-1
test Z80 and decode, 7-2
testing RAM, 7-3
timeout, disk controller, 8-4
tools required, 4-2
track 0, 3-4
track 0 bit, 3-9
track movement, 3-3
track register $41, 3-6
tracks per inch, 3-3
types of drive, 3-2

UID, 9-4
undelete, 9-4
unlink, 9-4
user programs $7800 up, 2-1

verify and test, 7-1
verify track Type 1, 3-7
version 2 conversion, 9-5
Version A.4x, 1-2

version number 1.4, 1-1
version O/S 0B, 8-3

wait states, 2-3
Walsh, Conal, 1-2
warm start, 2-3
WD1772, 1-2, 3-6
WD1772 address $40, 2-2
WD1772 commands, 3-6
WordStar, 1-2
write error, 8-4
write pre-compensation, 3-6
write protect, 9-5
write protect bit, 3-9
write sector, 3-7
write system tracks, 9-3
write track, 3-7
write Z80 ram 08, 8-2

Z80, 1-1
Z80 address decode, 2-1
Z80 assembler, 2-1
Z80 introduction, 2-1
ZCLRINT $10, 2-2
ZCOMMAND, 2-4
ZCOMMAND $FFFFCD, 2-4
ZCPR3, 1-2
ZDATA $FFFFC1, 2-4
zero track, 3-4
ZINTS $10, 2-2
ZPAL U8 decode, 2-1
ZRDOS, 1-2
ZRTRDY bit 2, 2-2
ZRXRDY bit 1, 2-2

Disk Co-processor iv

Table of Contents

1 Introduction .. 1-1
Number of drives .. 1-1
Summary of features .. 1-1
Optional kits .. 1-1
Manual contents .. 1-2

2 SSDCC Design Overview .. 2-1
Z80 introduction ... 2-1
Z80 address decode ... 2-1
Z80’s I/O address map ... 2-2
Input port .. 2-2
Drive select latch ... 2-3
Interrupts .. 2-3
Wait states ... 2-3
About 16L8 PALs ... 2-4
Interface to 1616 ... 2-4
Communication with the Z80 .. 2-4

3 The Floppy Disk Interface ... 3-1
Types of disk drives .. 3-2
Chart of drive characteristics .. 3-2
Drive mechanics .. 3-3
Drive electronics ... 3-3
Disk speeds .. 3-4
Disk controller chip .. 3-6
Controller commands ... 3-6
Format byte patterns .. 3-9
Disk select latch ... 3-10
Summary ... 3-10

4 Construction Technique .. 4-1
Who can build this kit .. 4-1
‘Fix It’ guarantee .. 4-1
Built and tested ... 4-1
Getting started .. 4-2

5 Parts List ... 5-1
Basic kit ... 5-1
IC socket kit .. 5-3
SCSI kit .. 5-3
I/O kit ... 5-3

6 Construction: Part 1 .. 6-1
1616 requirements .. 6-1
Hints, tips and notes ... 6-1
Integrated circuits and sockets .. 6-1
Soldering .. 6-2
Board modifications ... 6-2
Construction .. 6-3

Step 1 Checkout PCB .. 6-3
Step 2 Resistors ... 6-3
Step 3 IC Sockets, resistor networks ... 6-3

Disk Co-processor i

Step 4 Edge connector, LED ... 6-4
Step 5 Monolithic caps .. 6-4
Step 6 Tantalum caps .. 6-4
Step 7 Connectors, links ... 6-5

7 Construction: Part 2 .. 7-1
Guide to testing, and inserting ICs. ... 7-1
Step 8 Z80 CPU timing ... 7-2
Step 9 Processor and decoding .. 7-2
Step 10 Z80 RAM ... 7-3
Step 11 1616 interface ... 7-4
Step 12 Disk interface ... 7-5

8 SSDCC Software .. 8-1
Block read command 01 ... 8-1
Block write command 02 .. 8-1
Display error message command 03 ... 8-1
Format command 04 .. 8-2
Format type 2 command 05 ... 8-2
Flush buffers command 06 ... 8-2
Read Z80 RAM command 07 .. 8-2
Write Z80 RAM command 08 ... 8-2
Call a Z80 program command 09 ... 8-2
Read Z80 ROM version command 0A .. 8-3
O/S version byte 0B .. 8-3
Set floppy disk step rate command 0C ... 8-3
Disk change detect 40 ... 8-3
Error messages produced by the disk controller software 8-3
Error messages produced by the Z80 ... 8-3

Seek failure ... 8-3
Drive busy(1) Drive busy(2) ... 8-4
Write error(n) NN Read error(n) NN .. 8-4
Format error .. 8-4
No RDY signal .. 8-4
Bad error number .. 8-4

Error messages produced by 1616/OS .. 8-4
Disk controller timeout ... 8-4
No TXRDY: Command = $NN .. 8-4

Using 1616/OS with multiple block devices .. 8-4

9 Disk Organisation .. 9-1
The root block ... 9-1
The block usage bitmap ... 9-2
The boot block ... 9-3
The root directory ... 9-3
The directory ... 9-3
The 1616 disk drive utility program ... 9-5

10 Appendix A: Connector Pinouts ... 10-1
Floppy disk data connector .. 10-1
Hard disk power connector ... 10-2
Floppy disk power connector ... 10-2
SCSI connector ... 10-3
Serial ‘A’ connector .. 10-4
Serial ‘B’ connector .. 10-4

Disk Co-processor ii

Expansion connector pinout .. 10-5

11 Appendix B: Switch and Link Settings .. 11-1
Switches ... 11-1

Eprom settings .. 11-1
Normal mode .. 11-1
Test mode switch settings ... 11-1
Selecting the tests .. 11-1

Test 0 - Incrementing loop .. 11-2
Test 1 - Write to memory .. 11-2
Test 2 - Write to $6000 ... 11-2
Test 3 - Test RAM ... 11-2

Link (interrupt) settings ... 11-2

12 Appendix C: EPROM startup code .. 12-1

Disk Co-processor iii

