
Applix 1616 Software

Shareware Uti-
lities # 1

Quick Reference

Disclaimer

None of us claim that these utility programs are good for anything. If you think
they are, great, but that is up to you to decide. If any, or all, of these programs
don’t work, that is your problem, not ours. If you lose a million dollars, or any-
thing else, because one or all of these programs stuffs up, you are out of pocket
the million, not us. If you don’t like this disclaimer: tough. We reserve the
right to do the absolute minimum provided by law, up to and including nothing.

In no event will Applix be liable for direct, indirect, special, incidental, or
consequential damages resulting from any defect in the software or its docu-
mentation.

This disclaimer has been provided in plain English, in keeping with Applix’s
policy of providing comprehensive, readable information about its products. It
is basically the same disclaimer all the fancy, expensive overseas software
packets provide, but without legal beagles mangling the English. Special thanks
to Dave Horsfall for bringing this disclaimer to my attention.
Conditions of Sale
By purchasing† this software you agree to:

Assign Power of Attorney to the Company.

Be cited as a reference for sales purposes.

Franchise your computer to the Company.

Use only Applix brand software. Your 1616/OS EPROMS have been adjusted to operate only with
Applix proprietary software, and any attempt to use any other brand will destroy your entire database,
your disk drive, and the room the computer occupies.

Accept the built-in update policy. The modem ¢ program dials up Applix and checks for any
upgrades. These are automatically purchased and your credit card debited. The program earns a
small sales commision.

Deny the program is faulty. Should you find a software bug, you will be considered a dissatisfied
user, who is likely to destabilise the corporate image. Should you attempt to disclose your dissatisfac-
tion with any product or service, the Company will make every effort to preserve its credibility by
destroying yours. This includes, but is not limited to, sabotaging your database, your bank accounts,
your share portfolio, your credit rating, and your police records. In the unlikely event that an effective
Data Protection Act ever exists, these sanctions may be replaced by hiring a hit man.

Relinquish all common law rights regarding consumer protection. Your citizenship. Your right to any
intellectual property created using these programs. Your first born male child.

The site licence authorises one user at one location only to use the software. If you can afford to
have two computers, you can afford to buy another copy.

Any software fault is deemed to be the fault of the user. The Help command activates a modem
request for the audit of your tax returns since 1978.

The company admits no liability for the quality of its product, or for its ability to perform any function
whatsoever (except act as a frisbie.)

†Aren’t you glad you didn’t actually have to purchase this shareware?

Notes on the shareware were rewritten to correspond somewhat with the actual
source code, complete with gratuitous errors to confuse you, by Eric Lindsay.

Comments about this manual or the software it describes should be sent to
either:

Eric Lindsay Applix Pty Limited
6 Hillcrest Avenue Lot 1, Kent Street
Faulconbridge 2776 Yerrinbool, 2575
NSW Australia N.S.W. Australia
(047) 512258 (048) 839 372

Programs (where applicable) Copyright 1989 by the authors. All Rights
Reserved.
Manual Copyright 1989 Eric Lindsay
ISBN 0 947341 ?? ?
MC68000 is a trademark of Motorola Inc.
UNIX is a trademark of AT&T

A Note to Authors

This is an attempt to provide quick reference guides to the wide variety of Shareware and
Public Domain programs made available for the Applix 1616 in the first 17 Shareware disks.

It would obviously not be possible without the enthusiastic support of all of you who wrote or
converted programs. In writing this material, I’ve generally based my descriptions on the
source code, and on what has often been a very rushed play with the programs themselves.
This means that I’m likely to have a lot of stuff wrong, so I’m asking for your help again.

Would you each look through my description of the programs you provided, and let me know
what I have wrong, and what corrections should be made?

If any of you would like your address shown, please let me know. If you are asking for a
contribution for your software, could you please let me know the suggested amount, and to
where it should be sent.

Some of you have provided extensive documentation files for your programs. If you would
like these included in the manual, would you let me know so that I can convert and laser print
them. Special thanks are due here to Michael Johnson, Conal Walsh and Greyham Stoney,
who have provided very extensive documentation of their work. Michael’s documentation is
included here. Greyham’s disk utility documentation, being almost as long as this manual, is
provided as a separate manual. Conal’s tutorials are being (gradually) published in the news-
letter.

The Quibbles heading is perhaps somewhat inconsistent, as I’ve included suggestions for
upgrades and changes. In many cases, things mentioned as bugs should be considered
opportunities for others to expand the work you have done, not as things that don’t work. If
you think I’m in error in your case, please don’t hesitate to contact me so I can make
changes.

Finally, it is my firm policy on this set of manuals, to provide complete updated versions (or
pages if appropriate) to everyone who contributes shareware for the Applix 1616.

The Shareware manuals come in three varieties.

• Games
• Light, Sound & Print
• Utilities

This division isn’t totally fixed, and is done merely to make the production of the manuals
(and location of the programs) somewhat easier for me. You will notice there is no page
numbering, and that programs are never listed back to back on a sheet of paper. This is
intended to make it easier for you to file the pages however it is easiest for you.

Eric Lindsay, 6 Hillcrest Ave, Faulconbridge NSW 2776
BH (02) 2189651 Tuesday to Friday Weekends (047) 512258

Quick Reference Applix 1616 Shareware Utilities # 1

arc - compress and archive files - Andrew Morton

arc [-]{ amufdxeplvtc } [biswn] [gpassword] archive [filename ...]

Description

arc archives, compresses and extracts files. Often used to collect related
files into a single file prior to transmission electronically.

a add files to archive.

m move files to archive.

u update files in archive.

f freshen date of files in archive.

d delete files from archive.

x extract files from archive.

e extract files from archive.

p copy archived files to standard output.

l list files in archive.

v verbose listing of files in archive.

t test archive integrity.

c convert entry to new packing method.

b retain backup copy of archive.

i maintain IBM PC compatible archive.

s suppress compression (store only).

w suppress warning messages.

n suppress notes and comments.

g encrypt decrypt archive entry.

Associated files

No source code sighted.

Distribution

unknown

Author

Ported by Andrew Morton?

Quick Reference Applix 1616 Shareware Utilities # 1

asciicalc - ascii string evaluation tutorial - Sid Young - SW#6

asciicalc

Description

A demonstration of a possible way to write an ascii string evaluator, uses
binary mathematics. Handy code fragment.

Associated files

asciicalc.exec , asciicalc.s ,

Distribution

Applix 1616 Shareware Disk # 6/utilities/sid

Author

Sid Young

Quick Reference Applix 1616 Shareware Utilities # 1

basic - Tiny basic - Andrew Morton - SW#14

basic

Description

Gordon Brandly’s Tiny BASIC, derived from the version published in Dr
Dobbs, May 1976. This is the 1984 68000 version for the Motorola
MEX68KECB, ported to the 1616.

Uses 26 single letter variables only, but accepts everything as either upper
or lower case. Reserved words can be used in full, or you can truncate
them, and end them with a . full stop.
: acts as a separator.

Commands include:
list, load, new, run, save
Expression evaluation can handle:
>= <> = <= < > and perhaps logical expressions.
Reserved words include
next, if, goto, gosub, return, rem, for, step, input, print, poke, stop, call,
peek, abs, to, step.
Rnd(n) returns an integer between 1 and n.
Size returns memory free.
Call allows use of all registers, and uses RTS to return.
Let is optional.
For more details, read the code!

Internal line format appears to be : line number as 4 hex digits, rest of line
in ASCII. The whole program ends when a @ is found.

Examples

Quibbles

Associated files

basic.exec, basic.s

See also

ssbasic

Distribution

Applix 1616 Shareware Disk #14

Author

Original from Palo Alto Tiny BASIC, in Dr Dobbs, May 1976. 68000 port
by Gordon Bradley, Applix port by Andrew Morton

Quick Reference Applix 1616 Shareware Utilities # 1

bigbuf - set buffer size for character devices - Andrew Morton -
SW#14

bigbuf [bufsize] [satx] [sarx] [sbtx] [sbrx] [cent] [kb]

Description

A program that lets you more easily set the size of the character buffer for
any of the I/O devices. The default buffer size is set to $4000 (16k bytes),
while the minimum allowed is 32 characters.

Of most use when running a serial port in background, or for making up a
defacto printer buffer.

Examples

bigbuf 1024 kb sets keyboard buffer to 1k.
bigbuf 4096 cent sets printer buffer to 4k.

Bugs

Associated files

bigbuf.c

See also

Distribution

Users Disk V4.0b /source
Applix 1616 Shareware Disk #14 /

Author

Andrew Morton.

Quick Reference Applix 1616 Shareware Utilities # 1

bmedit - bit map editor - Andrew McNamara - SW#15

bmedit bmfile

Description

Edit 16 by 16 graphic bit maps. The output file is a sequential list of the
bitmaps, as 16 longs.

The enlarged bitmap is displayed to the left of the screen, the normal size
version to the right of it. A full display of previous bitmaps is shown
below.

Use the arrow keys (or s e x d keys) to move.

 and keys (or r c) to move to the next or previous bitmap.

 and to move to front or back of file.

 (or 5) to toggle the dot on or off.

! Swap saved bitmap with current one.

^ Push bitmap into save space.

* Clear current bitmap.

Delete current bitmap.

Insert a bitmap.

q Quit.

s Save and quit.

w Write (save) and quit.

Associated files

bmedit.c , bmedit.xrel , bmedit.use

Distribution

Applix 1616 Shareware Disk # 15 /McNamara

Author

Andrew McNamara

PgUp PgDn

Home End

Space

Del

Ins

Quick Reference Applix 1616 Shareware Utilities # 1

c1616 - help system - Conal Walsh - SW#13

c1616 helpfile [swapfile]

Description

This is a full feature help system, that is intended (eventually) to replace
printed manuals. While not yet complete, it already has a multitude of fea-
tures, and Conal continually improves it. The next version, for example,
will probably be in full MRD form, so that it works as a pop-up. The
version of c1616.xrel on the disk uses the standalone SSEG library, so
you do not need the sseg.mrd to use it.

The helpfile text displayed by the help system is contained in a .csh
help format file. If no directory is specified, then the /help directory will
be searched. You should assign this to whatever directory contains the
.csh format files.

The sample help files on the disk are hcgrap.csh , which is the SSEG!
manual, and hcprog.csh , which is the 1616/OS Programmer’s Reference
Manual.

The swapfile must be a high speed disk, and is typically the ram disk /rd .
About 20k space is required, and the program will normally default to /rd .

The .rch files are the raw text files, containing the definitions and index
references, as well as the help information. Use the convhc.xrel pro-
gram to convert a file from this format to the .csh format used by c1616 .
The raw help file .rch format has more meaning when viewed in the
document mode of Wordstar 4 on Zrdos , but should also display correctly
under the DrDoc editor from Applix.

Conal reports that the Programmer’s Manual took 35 hours to convert, so
he is not inclined to do more manuals in a hurry. This means we need
people to convert manuals. ASCII versions of all the Applix manuals are
available on disk from Eric, if you are willing to convert a manual to Con-
al’s .rch and .csh format.

The .rch format consists of a text file, with the key words and phrases
surrounded by different control characters. The current version of c1616
is set to accept pages up to 15 lines long, with up to 45 characters per line.
Any page exceeding this will generate a warning from convhc.xrel , and
will not display correctly. Therefore, the raw text file must be set up in
these small pages.

^Bword̂ B word is a definition item: when this item is referenced else-
where, this is the page that will be displayed.

^Sword̂ S word is a reference item: it must be defined somewhere else
in the document. There can be any number of references to a
single definition item.

Quick Reference Applix 1616 Shareware Utilities # 1

^Dword̂ D word will be emphasised when it is displayed using c1616 ; it
has no other special meaning.

^L This marks the end of a page.

The character (ASCII 127, or 7F) marks the end of a
topic; these determine whether the user can use the and

 keys to step forward or backward.

Example

Type c1616 ./hcgrap while in directory /f0/C1616 .
Use to get a command summary.
If you have trouble starting it, make the following assigns .
assign /help .
assign /rd .

Associated files

-readme, auto.shell, c1616.as, c1616.xrel, convhc.c,
conchc.xrel, hcgrap.csh, hcgrap.rch, hcprog.csh,
hcprog.rch

Distribution

Applix 1616 Shareware Disk # 13 /c1616

Author

Conal Walsh.

Del

PgUp

PgDn

?

Quick Reference Applix 1616 Shareware Utilities # 1

calendar - prints whole year calendar - Paul Cahill - SW#4

calendar.bas

Description

Prints a whole year calendar, for a year from 1900 to 1999, one month after
another.

Uses the low resolution display, and returns display to 640 mode when
done.

Another calendar.
End program.

Quibbles

Associated files

calendar.bas

See also

cal (any year, month)

Distribution

Applix 1616 Shareware Disk #4 /utilities

Author

Paul Cahill

a

Enter

Quick Reference Applix 1616 Shareware Utilities # 1

cdev - dump character device tables - Andrew McNamara -
SW#15

cdev [device:]

Description

Dumps table of information associated with a character oriented input or
output device, showing input and output as separate items. You can
optionally include a device name, and may get additional information on
that device.

The devices are con: sa: sb: cent: null:

Table includes:
fd cdev name doio status passval lastline

Examples

cdev con:
(lists console statistics, also shows contents of the last line recall buffers.

Quibbles

Associated files

cdev.c, cdev.xrel (v2, 27-8-1989)

See also

Distribution

Applix 1616 Shareware Disk #15 /McNamara

Author

Andrew McNamara

Quick Reference Applix 1616 Shareware Utilities # 1

dateset - set system clock - David Fowler - SW#4

dateset.bas

Description

Prompts for input of the date and time, in decimal.
Sets the system clock, using the setdate command. Helpful if you can’t
recall the normal command parameters

Quibbles

Now that the help command gives full details, I’m not sure any aid is
required.

Associated files

dateset.bas

See also

sdate

Distribution

Applix 1616 Shareware Disk # 4/fowler

Author

David A Fowler, P. O. Box 269, Coffs Harbour Jetty, NSW 2450

Quick Reference Applix 1616 Shareware Utilities # 1

dateset - at power up, by Michael Johnson - SW#5

author:- MICHAEL JOHNSON, WAGGA WAGGA
program source code:- DATESET.S
date:- 15-9-88
version :- 1.1
document issue :- 2

INTRODUCTION

This program is used to set the system date and time. It designed for use at
power up only.

USAGE

This program is designed to be called directly from your boot code at a level 0
reset. It uses a specific area on the screen for its prompt string. The current
setting for each part of the date is displayed at the appropriate time with the cur-
sor directly after it. The input will only display 2 characters and each time you
press a key the numbers are shifted left and the new 2 digit number is displayed.
When you are satisfied that the displayed number is correct you hit the ENTER
key and the number is stored. The cursor then steps to the next part to be set
and prints it’s current contents. The above procedure is then repeated.

If you have made an error then the backspace key will store the current part and
step back to the previous part.

When you hit ENTER after the seconds have been input, then the program will
store the new values as the current system time and date.

KIND REGARDS

MICHAEL JOHNSON

11/12 KOKODA ST. WAGGA WAGGA. 2650

(069) 255255

Quick Reference Applix 1616 Shareware Utilities # 1

debug - breakpoint debugger - Gerhard Baumann - SW#14

Description

The debugger displays the data and address registers, together with the pro-
gram counter, the contents of the address pointed to by the program
counter, the mnemonic of the instruction, and the status register.

Include the file z.s in the source program, then invoke the macros trint ,
then trace , which enable tracing from that point on.

s Enable automatic stepping, disables other functions. Pressing it again
enables manual stepping.

g Continue until next breakpoint.

o Escape from debug to 1616/OS temporarily (type quit to return).

q Quit the debug program.

r Changes contents of address or data register.

 Executes opcode currently being displayed.

Examples

Quibbles

Associated files

debug.xrel, debug.doc, debug.s,

See also

disassembler

Distribution

Applix 1616 Shareware Disk #14 /baumann/debug

Author

Gerhard Baumann.

Enter

Quick Reference Applix 1616 Shareware Utilities # 1

demonstration - of exception handler by Michael Johnson - SW#5

author :- MICHAEL JOHNSON, WAGGA WAGGA
program name :- DEMONSTRATION.XREL
program source code :- DEMONSTRATION.S
date :- 14-9-88
version :- 2.0
document issue :- 2

INTRODUCTION

This program is supplied as an example of how to use the LOCATE and
EXCEPTION mrd’s. The program has some lines disabled from the assembler.
You can restore these if you wish. The text files are supplied in the TEXT
directory. The DEMONSTRATION.S file has a fully documented within itself
to help you work out what is happening.

I hope this is useful to you. PLEASE tell me what you think of this software. It
does help me to decide whether I should write any more programs such as
LOCATE and EXCEPTION mrd’s,

kind regards
MICHAEL JOHNSON
11/12 KOKODA ST. WAGGA WAGGA 2650
(069) 255255 (yes I picked it)

ADDRESS ERROR

If all is well you should have an address error printed out, the program has
recovered via the restart address, and you can read this information.

You will note that the contents of all the registers have been printed with ident-
ifier. The program counter, address being accessed and the instruction opcode
are printed on the next line.

The processor function code follows which indicates exactly what the processor
was doing when it failed.

The next section gives a fully decoded printout of the status register to simplify
the debugging process (this can be very helpful).

The final section of the printout is headed EXTRA INFORMATION. This is
the data that you request the system to print as further support in the debugging
proccess. All source code of every program on this disc has been put on this
disc to assist you in the use of this program by example.

press <ENTER> to continue

Quick Reference Applix 1616 Shareware Utilities # 1

dhrystone - c compiler benchmark - Andrew Morton - SW#9

dhryreg
dhrynoreg

Description

A benchmark that shows the speed of a compiler and processor combina-
tion, especially for relatively small programs. Used for testing speedups in
15 MHz version. dhryreg is the fastest version, since it uses register
variables where possible. dhrynoreg is slower, since it avoids using regis-
ters. This is probably Version 1, and has been replaced by a later version
on many systems.

The more dhrystones per second, the better.

Examples

Quibbles

Associated files

dhrystone.c, dhrynoreg.xrel, dhryreg.xrel

See also

quick.mrd

Distribution

Applix Shareware Disk #9 /15mhz

Author

Reinhold P Weicker
Ported to 1616 by Andrew Morton

Quick Reference Applix 1616 Shareware Utilities # 1

dial - simple phone autodialler - Matthew Geier - SW#15

dial phone

Description

A simple telephone auto dialler, that assumes a 2400 baud Hayes compat-
ible modem on sb: .

Use to retry a number, any other key to abort.

Associated files

dial.xrel , dial.c ,

Distribution

Applix 1616 Shareware Disk # 15 /geier

Author

Matthew Geier. 20/8/1989

Space

Quick Reference Applix 1616 Shareware Utilities # 1

disassemble - disassemble memory or file - Gerhard Baumann -
SW#14

disassemble file.xrel [char]
disassemble m address1 address2 [char]

Description

disassemble will accept either a file or a memory range. The optional
char parameter will be included in the display of the instruction relative
program counter position in the first column, and the opcode in the second
column.

The m informs the program it is to disassemble memory, between address1
and address2.

Associated files

disassembler.xrel , disassembler.s , readme

Distribution

Applix 1616 Shareware Disk # 14 /debug

Author

Gerhard Baumann

Quick Reference Applix 1616 Shareware Utilities # 1

diskio - disk input output calls tutorial - Sid Young - SW#6

diskio

Description

Tutorial on using the disk i/o syscalls from assembler.

Quibbles

Associated files

diskio.exec, diskio.doc, diskio.s

See also

clrwin , prog?

Distribution

Applix 1616 Shareware Disk #6 /tutorial

Author

Sid Young

Quick Reference Applix 1616 Shareware Utilities # 1

du2 - select and view disk blocks - Sid Young - SW#6

du2

Description

Select and view the contents of disk blocks. Menu driven, shows filesize,
filenames, contents of blocks in ASCII or hexadecimal. Directories can be
full or short. Change block numbers, and increment or decrement block
number. Logs new disks.

Ascii block dump.
Block number decrement.
Directory.
Enter block number.
Hex block dump.
Information about disk.
Log a new disk.
Next block number.
Short directory.
EXit.

Quibbles

Bombs system badly on blocks 0 or 1.
Has problems with /f1 (Sid doesn’t have a second drive).

Associated files

du2.exec , du2.s , du2.doc

See also

rawread, rawwrite

Distribution

Applix 1616 Shareware Disk # 6/utilities/sid

Author

Sid Young

a

b

d

e

h

i

l

n

s

x

Quick Reference Applix 1616 Shareware Utilities # 1

Easy_write - group and modify programs - Michael Johnson -
SW#15

easy_write

Description

Michael writes "Easy_Write was written to assist in the writing, compiling and
testing of source files. It is menu driven to make it easy to use. The program
uses a data file easy_write.data to store the relevent information for the pro-
gram being written. Easy_Write will compile and/or print files to the printer in
the background if you have 1616/OS version 4.0 or later, otherwise these
functions will be done in the foreground only. The "compile execute" and
"compiler error" files must be set before Easy_Write will compile or assemble
your source code.

Starting Easy_Write

There are no parameters neccessary, as all the information that easy_write
requires for your application is stored in the file easy_write.data in the cur-
rent directory. Just type :-

easy_write and it will do the rest.

When easy_write is started it will present you with the following menu if it
finds your data file in the current directory. If the data file is not found
easy_write will inform you it was not found before displaying this menu.

MAIN MENU

EASY WRITE MAIN MENU
0 EXIT TO 1616 O/S
1 EDIT A FILE
2 COMPILE THE FILE(S)
3 CHECK COMPILER ERRORS
4 EXECUTE THE PROGRAM
5 PRINT A FILE TO SCREEN
6 PRINT A FILE ON THE PRINTER
7 CHANGE THE DATA FILE
which (0-7)

0 EXIT TO 1616 O/S

Will exit to 1616 O/S and release all allocated memory.
1 EDIT A FILE

Will print the "EDIT A FILE" heading and give you a menu of all the files
which are used by easy_write in the current application. To edit the file, sim-
ply type the number next to the file, press , and the editor will invoked
with that file as the argument. If you wish to set your own tab size, then include
the value after the filename, and don’t forget to separate them with a space.
2 COMPILE THE FILE(S)

Enter

Quick Reference Applix 1616 Shareware Utilities # 1

Will execute the string command which is used to compile/assemble the source.
The basic design concept of this function is to use a SHELL file to compile/as-
semble your program. This software is supplied with the source files for hexa-
gon . Cchexagon.Shell is an example of the way I create the shell file that is
used to compile hexagon . You could use a single command, i.e. cc
easy_write.c }easy_write.err , instead of the shell file if you wish. How-
ever, I recommend the use of a shell file for most compilations and assem-
blies. If you are using version 4.0 or higher, then this function is carried out as
a background function. Therefore you must have the error collection file set.
3 CHECK COMPILER ERRORS

Will print the contents of the error file onto the screen only. It uses the inbuilt
type command to do this.
4 EXECUTE THE PROGRAM

Will execute the program that you are creating, so that you may test the pro-
gram during development. The execute filename will be printed, and then
easy_write waits for you to add any parameters you may require. You then
press and the program is started.
5 PRINT A FILE TO SCREEN

Will use the inbuilt type command to send a copy of the targeted file to the
screen. The files will be displayed and selected in the same manner as the edit
function.
6 PRINT A FILE ON THE PRINTER

Will use the inbuilt type command to send a copy of the targeted file to the
printer. The files will be displayed and selected in the same manner as the edit
function. If you are using version 4.0 or higher then this function is carried out
as a background function.
7 CHANGE THE DATA FILE

Will allow you to alter the file easy_write.data to reflect any changes that
occur e.g. a new source file. See the next section for details.
CHANGING THE DATA FILE "EASY_WRITE.DATA"

Function "7" in the main menu will select this function. You are able to set the
compile/assemble command (or command file), the execution command and the
names of the source files. All source file names must be in full.

THE PREPARATION MENU
EASY WRITE CHANGE THE DATA FILE
0 MAIN MENU
1 INSERT a filename for editing
2 DELETE a filename from editing
3 CHANGE COMPILE/ASSEMBLE shell filename
4 CHANGE the EXECUTABLE filename
5 CHANGE the ERROR filename
6 CHANGE a filename for editing
which (0-6)?

Enter

Quick Reference Applix 1616 Shareware Utilities # 1

0 MAIN MENU

Will return you to from whence you came (MAIN MENU).
1 INSERT a filename for editing

Will prompt you for the filename to be inserted and append the name to the list.
If a null string is input then no name is inserted.
2 DELETE a filename from editing

Will display the files and wait for you to indicate which one is to be deleted. If
a null string is input then no name is deleted.
3 CHANGE COMPILE/ASSEMBLE shell filename

Will display the current setting for the compile/assemble file and them prompt
for the new file e.g.

Current shell file is ’CCEASY_WRITE’

New shell filename is :-

If a null string is input then no change is made.
4 CHANGE the EXECUTABLE filename

Will display the current execution command and then prompt for the new
execution command e.g.

Current shell file is ’EASY_WRITE’

New shell filename is :-

If a null string is input then no change is made.
5 CHANGE the ERROR filename

Will display the current error file name and then prompt for the new error file
name e.g.

Current error file is :- ’EASY_WRITE.ERR’

New error filename is :-

If a null string is input then no change is made.
6 CHANGE a filename for editing

Will display the files and them prompt you for the filename to change. This has
been included because I make a lot of typing errors. So if you are like me you
will need it too. If a null string is input then no name is changed.

Final Comment

This program is supplied ready to use with the easy_write program so if you
want to try it out and also examine how it works just keep looking. I hope it
will all eventually make sense.

Quick Reference Applix 1616 Shareware Utilities # 1

Quibbles

Michael will put me out of work, by writing his own superior documenta-
tion. This manual page is a direct reprint of his own doc file. Great stuff.

Associated files

easy_write.xrel, easy_write.c, easy_write.data, easy_wri-
te.doc

See also

doc-write

Distribution

Applix 1616 Shareware Disk # 15 /Johnson

Author

Michael Johnson, 11/12 Kokoda St. Wagga Wagga. 2650 (069) 255255

Quick Reference Applix 1616 Shareware Utilities # 1

ep232 - eprom burner software - Joseph Moschini - SW#3

ep232

Description

Menu driven program intended to run a Diamond Systems EP232 eprom
burner, via the serial ports. It can handle 2716 to 27512.

a Enter filename

b Bytes, number to read or write

e File offset, for splitting eproms

s Select serial port sa: or sb:

c compare file to eprom

d exec a 1616/OS command

f hex test eprom

r read eprom into a file

w write eprom from a file

t test the programmer

Set the serial line selects prior to inserting the eprom. The burner is con-
trolled via the RS232 DTR and Rx lines. DTR high means to program an
eprom. A low to high transition on DTR resets the address counter.

Quibbles

Associated files

ep232.exec, ep232.c, ep232.doc, ep232fk.shell (function key
assignments)

Distribution

Applix 1616 Shareware Disk #3 /eprom

Author

Joseph L Moschini, 33 Wade St, Embleton, Perth WA 6062

Quick Reference Applix 1616 Shareware Utilities # 1

except - exception handler for bug tracing - Michael Johnson -
SW#3, SW#5

except

Description

except is an MRD, and must be installed as part of an MRDriver file at
boot up. It is activated by typing except, and traces the execution of a pro-
gram. The source of this program is sometimes called exception.

When you write your assembly code, you add trap#0 (for hard copy) or
trap#1 (for video display) throughout the troublesome areas of your code.
except handles address errors, bus errors, illegal instructions, and provides
a dump of the CPU registers, stack details, a decoded status register, plus
user supplied details. These are provided whenever it encounters an appro-
priate trap instruction in your code.

quit continues the trace after you investigate the results of a trap. This is
actually the normal 1616/OS command, which continues your program as
if it had never stopped.

The document file contains (dare I say it) exceptionally good instructions
on the use of the program, and is reprinted in this version of the shareware
manual.

Associated files

except.mrd, except.s, exception.doc, demonstration.s

See also

trace

Distribution

Applix 1616 Shareware Disk #3 /except

Author

Michael Johnson, 11/12 Kokoda St. Wagga Wagga NSW 2650 (069)
255255 (home,) (069) 230388 (work - a free call).
Suggested donation $10.

Quick Reference Applix 1616 Shareware Utilities # 1

Except MRD, by Michael Johnson - SW#3, SW#5

program name:- EXCEPT.MRD
author:- MICHAEL JOHNSON WAGGA WAGGA program source code:-
EXCEPT.S
date:- 13-9-88
version :- 2.0
document issue :- 2

EXCEPTION HANDLER

This MRD is used to help find those elusive little bugs which creep into your
software. It is designed as a progammers tool, which will supply information
concerning your program, its variables, and other information you may wish to
know about the software you are developing.

This version is designed as a memory resident driver. Therefore you must build
it into the MRDRIVERS file on your disc so that it will be loaded on power up.
The MRD will printout a full list of the processors registers and their contents.
The status register is printed out in a fully decoded form. A very useful facility
is the ability to printout up to 256 long words as EXTRA INFORMATION at
the end of the exception printout. You may set this to be any information you
wish e.g. program start address (xrel), the value of variable, etc.

The MRD will also accept a restart address which it will use as the return
address when the MRD has completed it’s functions. This will allow you to
install a crash recovery system into your software if needed.

A full source listing is supplied so you can modify it if you wish. The exception
handler is memory independent, therefore if you do modify it please make sure
you maintain the memory independence. The current version of SSASM will
produce an XREL format file on one assembly so you do not need to use the
genreloc.xrel package to produce an MRD file. DO NOT alter the first few dc.l
statements or the last dc.l statement and DON’T put any code after the last dc.l
statement (progend) or you will not produce an XREL file.

This MRD will use a stack frame of 36K bytes so make sure you allow enough
space for the stack when you install this driver.

EXCEPTIONS HANDLED BY EXCEPTION MRD

The following exceptions are handled by the EXCEPTION MRD

(1) Address Error
(2) Buss Error
(3) Illegal Instructions
(4) Trap Zero (for investigating bugs with hardcopy)
(5) Trap One (for investigating bugs with softcopy)

Quick Reference Applix 1616 Shareware Utilities # 1

The first 4 exceptions will give you a hard copy of the proccessor register con-
tents, the information placed on the stack by the exception and any extra infor-
mation you may want in order to find the problem. The first 3 also provide a
facility whereby your software may be restarted from a given point. You
simply supply a restart address for this facility to operate, otherwise it will
execute a warm boot of 1616 O/S. The trap zero and trap one exceptions will
continue execution of your software with the entire processor registers and
status restored to the same condition they were in when the instruction was
reached by the program counter.

INFORMATION SUPPLIED

The exception handler is designed to give you as much information as possible.
The following information is printed:-

1) all CPU register values.

2) The additional information supplied on the stack for a buss or an address
error

3) the function code fully decoded

4) the status register fully decoded

5) any extra information (user supplied)

When the printout has been completed the following will occur.

If a buss error, address error or illegal instruction had been encountered the fol-
lowing happens:-

1) adjust the return address on the stack (explained later)
2) return via the address it placed on the stack in the previous step

If a trap one or trap zero was encountered the status register and program
counter are reloaded from the stack and your program will then continue as if it
had never stopped.

ADDRESS ERROR

When an address error occurs the contents of all the registers will be printed
with with their identifiers. The program counter, address being accessed and
the instruction opcode are printed out. The processor function code follows
which indicates exactly what the processor was doing when it failed. The next
section gives a fully decoded printout of the status register to simplify the
debugging process (this can be very helpful). The final section of the printout is
headed EXTRA INFORMATION. This is the data that you request the system
to print as further support in the debugging proccess.

example of the address error printout :-
ADDRESS ERROR
 D0=12345678 D1=0000000C D2=00000002 D3=FFFFFFFF
 D4=0003B102 D5=0000000D D6=000003E8 D7=00000003

Quick Reference Applix 1616 Shareware Utilities # 1

 A0=0003AFD8 A1=0003ACF8 A2=0003AD0C A3=0003E538
 A4=0003E545 A5=0003AFD8 A6=000540BC A7=0005405E

PROGRAM COUNTER:- 0003AB14 ADDRESS:- 0003AFD9
INSTRUCTION:- 2028

FUNCTION:-read supervisor data

STATUS:-
trace bit=0 supervisor bit=1 interrupt level=0
extend bit=0
negative bit=0 zero=0 overflow bit=0
carry bit=0

EXTRA INFORMATION
 31313131 32323232 33333333

END OF PRINT

BUSS ERROR

This exception will produce the same printout as the address error and all other
functions are the same.

ILLEGAL INSTRUCTION ERROR

This exception will produce a printout whenever the processor tries to execute
an opcode which is not valid (except the unimplemented instructions).

The printout is as follows:-
ILLEGAL INSTRUCTION
 D0=12345678 D1=0000000C D2=00000002 D3=FFFFFFFF
 D4=0003B102 D5=0000000D D6=000003E8 D7=00000003

 A0=0003AFD8 A1=0003ACF8 A2=0003AD0C A3=0003E538
 A4=0003E545 A5=0003AFD8 A6=000540BC A7=0005405E

PROGRAM COUNTER:- 0003AB14

STATUS:-
trace bit=0 supervisor bit=1 interrupt level=0
extend bit=0
negative bit=0 zero=0 overflow bit=0
carry bit=0

EXTRA INFORMATION
 31313131 32323232 33333333

END OF PRINT

TRAP ZERO (hard copy)

This instruction will print the data on the printer and then return to the next
instruction following the trap zero instruction which called it with all of the
proccessor registers and status register restored exactly as they were before the
trap zero was executed.

In other words:-

Quick Reference Applix 1616 Shareware Utilities # 1

THE PROGRAM WILL EXECUTE TRAP ZERO THEN CONTINUE
EXECUTION AS IF IT HAD NEVER HAPPENED!

an example of the printout:-
TRAP ZERO
 D0=12345678 D1=0000000C D2=00000002 D3=FFFFFFFF
 D4=0003B102 D5=0000000D D6=000003E8 D7=00000003

 A0=0003AFD8 A1=0003ACF8 A2=0003AD0C A3=0003E538
 A4=0003E545 A5=0003AFD8 A6=000540BC A7=0005405E

PROGRAM COUNTER:- 0003AB14

STATUS:-
trace bit=0 supervisor bit=1 interrupt level=0
extend bit=0
negative bit=0 zero=0 overflow bit=0
carry bit=0

EXTRA INFORMATION
 31313131 32323232 33333333

END OF PRINT

TRAP ONE (soft copy)

This exception is different to the others. It will print all the information on the
SCREEN. The current screen contents are saved on the stack (all 32K). The
current window, video display page and cursor information is saved. Then the
information is printed. Trap one will NOT print any extra information. When
the data is printed the handler will then drop into the 1616 O/S command
handler so that you may examine memory or whatever.

When you are satisfied you simply type QUIT and the entire screen is reloaded
from the stack and restored to its original state. The processor is then reloaded
to its condition prior to the exception and your software continues as if the
exception had never happened. The following steps take place when a trap one
is executed:-

1) save the video display page
2) save the screen mode
3) save screen window
4) make sure access page = display page
5) save the screen on the stack (all 32K)
6) set mode to 640
7) set new window
8) clear the screen
9) find the screen driver
10) setup the 4K print buffer on the stack
11) create the exception string in the buffer
12) print the string
13) set new prompt
14) drop into 1616o/s

Quick Reference Applix 1616 Shareware Utilities # 1

At this point you may execute any 1616o/s commands, and then the user types
QUIT (hopefully), and the story continues:-

15) unlink the print buffer from the stack
16) restore users window
18) restore users screen mode
19) restore the video display page
20) exit the exception

At this point we should be back inside the users program, with the entire sys-
tem in exactly the same state it was just before the trap #1 was executed.

RESTART POINTER

You will need to set this to the restart address location within your program if
you wish to include a crash recovery section in your software. If an exception
other than the trap zero or one occurs then this address is used to replace the
program counter address on the stack. The RTE instruction then loads this
address as the return address.

The MRD will set up a pointer to its own internal data structure which will set
this address to an internal routine which executes a warm boot of the system (le-
vel 2 reset). If you wish to supply extra information but not the restart address
then set the restart address to zero and the MRD will do a warm boot after
printing the extra information.

The EXTRA INFORMATION

The handler will allow you to set up an address table which point to long words
which will be printed. The maximum number of long words you can set is 256.
All output is directed to the centronics port except for the trap one exception
which will print all information, except the user supplied extra information, on
the screen.

You will be required to supply a pointer to a structure within your program in
order to use this facility. If this pointer is not supplied then the MRD will set
the pointer to an internal structure which will do a warm boot of the system.
The data structure is as follows:-

long word
1) the restart address for your code
2) the number of extra words to be printed
3) address of first long word to be printed
4) address of second long word to be printed

etc.....

N) address of last long word to be printed

HOW TO USE THE EXCEPTION MRD

THE MRD COMMAND FUNCTIONS AND USES

Quick Reference Applix 1616 Shareware Utilities # 1

RESETS

A level 0 reset steps are:-

1) The MRD will read in the current 1616o/s settings and save them.
2) setup a table with the MRD vector values in it.
3) set state to enabled
4) set the data structure pointer to internal data structure.

The level 1 and 2 resets will

1) set the state to active
2) set the data structure pointer to internal data structure.

ENABLE

The enable command will enable the mrd if it has been disabled. No argument
is required. The state is set to active. Returns 0 on exit

DISABLE

The disable command will prevent the mrd from being used by the 1616o/s
level call or the callmrd() syscall. The state is set to passive. Returns 0 on exit.

DOIT

The doit command requires an argument which is a pointer to your data struc-
ture or set to zero if you do not wish to set your own data structure. The MRD
will then return a zero if your data structure was used or a one if the MRD’s
internal data structure was used or -1 if the mrd is inactive. The following steps
occur.

1) the argument is tested for a valid address i.e. $4000 < pointer value <
stack pointer

2) set the restart pointer value (argument from user if valid)
set internal data structure if argument = 0 or invalid.

3) copy the MRD vector pointers to the MC68000 vector table

4) return a value of 0, 1 or -1.

STOPIT

The MRD’s activity is stopped when this command is sent to it. No argument is
required. The following steps are taken when this command is received. This
call will return 0 if mrd is active or -1 if the mrd is not active.

1) set pointer to internal data structure

2) copy the 1616o/s vector pointers to the MC68000 vector table

3) return 0 or -1.

Quick Reference Applix 1616 Shareware Utilities # 1

VERSION

This command will return the version of the MRD as documented in 1616
technical reference manual. The first MRD version is 2.0 (hopefully this will
not need any updating).

NAME

This command will return a pointer to the MRD’s name EXCEPTION as
documented in the 1616 technical reference manual.

EXECENTRY

This command will return a pointer to the MRD’s name command level entry
address as documented in the 1616 technical reference manual.

1616O/S COMMAND LEVEL USAGE

The simplest way is to use the MRD is via the 1616o/s command EXCEPTION.
The mrd will then give you a status printout to say which vectors are set. If the
MRD’s vectors were set then this command will reset the 1616o/s vector values.
If the 1616o/s vectors were set then the command will set the MRD’s vectors.

USING THE MRD FROM WITHIN YOUR SOFTWARE (assembler)

The first step is to make sure that the EXCEPTION MRD is loaded. To do this
we look for it by name and at the same time we also find its call value and store
it. All of the following code is written to be relocatable without any changes.

First we must find the MRD. If it is not present then we can’t use it. The fol-
lowing equates are used in this example.
callmrd equ 89 call mrd syscall
doit equ 7 doit mrd command
stopit equ 8 stopit mrd command
mrdname equ 3 find mrd name

* find the EXCEPTION mrd
lea name(pc),a2 get address of name
move.l #0,d7 mrd’s are zero numbered
move.l #mrdname,d2 get name command

tstmrd move.l d7,d1 load the MRD number
move.l #mrdname,d2 command to get the

name pointer
move.l #callmrd,d0 call the driver
trap #system

tst.l d0 found one
bmi retrn no must have been through them

all

* we have a name now test for a match

Quick Reference Applix 1616 Shareware Utilities # 1

move.l d0,a0 mrd’s name from callmrd
move.l a2,a1 name we are looking for

cmptst cmp.b (a0)+,(a1)+ test character by
character

bne next not this mrd try next
tst.b (a0) end of name
beq found yes we found it
bra cmptst no test next character

next addq.l #1,d7 no wrong one try the next
bra tstmrd

* name of MRD

name dc.b ’EXCEPTION’,0,0 exception handler

This section of code is used when the MRD cannot be found. You will need to
formulate this section to fit your situation.
retrn ???? code to handle this situation

The MRD has been found so now you setup the data structure and insert the
extra information and restart address. You put the address of each word to be
printed onto the stack in reverse order. This allows us to write relocatable code
(memory independent). NOTE start1 is the address of the instruction at which
we continue execution after the exception.
found lea mrdnum(pc),a0 save MRD number at
this location

move.l d7,(a0) save number
move.l #3,d0 print 3 long words (for this

example)
pea data3(pc) third long word
pea data2(pc) second long word
pea data1(pc) first long word
move.l d0,-(sp) number of words to print
pea start1(pc) address of restart point
lea restart(pc),a0 pointer to data

structure

* push the information into data structure

move.l (sp)+,(a0)+ insert restart
address
loop move.l (sp)+,(a0)+ from stack to struc-
ture

dbra d0,loop this will count the no. of
words

The MRD must be activated. The doit command requires an argument which is
a pointer to the data structure.

lea restart(pc),a0 address of data
structure (argument)

lea mrdnum(pc),a1 get address of
number

move.l (a1),d1 load the MRD number

Quick Reference Applix 1616 Shareware Utilities # 1

move.l #doit,d2 command to activate it
move.l #callmrd,d0 call the driver
trap #system

Here you test the returned value for the setting or maybe the MRD is disabled.
tst.l d0 test return value
bmi disabled mrd is disabled
beq mypointer my pointer was set

* the system pointer was set

At this point the MRD has been activated and loaded with the information it
requires to operate. If you wish to activate it and not supply the argument then
make the argument zero and the MRD will setup its own data structure. This
data structure will not give any extra information and will do a warm boot of
1616o/s when the exception has been printed. The trap one and trap zero
instructions will return to your program with the proccessor intact and continue
execution from the next instruction reguardless of which data structure has been
set.

BEFORE YOU EXIT BACK TO 1616O/S

IF you have activated the MRD then you must deactivate the MRD before you
exit from your program. This is a very simple procedure which requires no
argument. The following code will achieve this :-

* deactivate the EXCEPTION mrd and reset the structure pointer and
* restore 1616o/s vectors in the vector table

lea mrdnum(pc),a1
move.l (a1),d1 mrd number
move.l #stopit,d2 stopit will reset the

* data structure pointer
move.l #callmrd,d0 call the driver
trap #system

You are able to exit from your program safely at this point.

DATA STRUCTURE FOR EXTRA INFORMATION

The following data structure is used by the EXCEPTION MRD to print the
extra information and it also holds the restart address. The first long word is the
restart address if this address is zero then the system will do a warm boot after
handling the exception (but a trap zero or trap one will simply return to the pro-
gram which called it). The second long word is the number of extra long words
to be printed and if this is equal to zero then none will be printed. The third and
subsequent number of long words are the addresses of the extra long words
which will be printed.
restart dc.l 0 restart address

dc.l 0 set for number of extra long
words to print

dc.l 0 first address
dc.l 0 second address
dc.l 0 third address

Quick Reference Applix 1616 Shareware Utilities # 1

* etc....... until last long word is defined

dc.l 0 nth address

VERY IMPORTANT

NOTE THIS
It will use 36K OF STACK, so make sure you extend the stack size when you
install this MRD.

register usage by the exception handler

a0 general purpose
a1 as output buffer pointer
a2 as pointer to hex table
a4 as pointer to regdat (initial load data)
 holds stack frame info
a5 as pointer to string table
a6 copy of stack pointer/reg pointer
d0 as temp store for long word/general use
d1 as the hex byte accum.
d2 as counter for no. of hex bytes to print
d3 as counter for no. of regs
d4 as store of " d0=" (reg name)
d5 as store for "0c0d" (cr,lf)
d6 as store for " " 2 spaces
d7 general use

This is the internal data structure which is used if no user data has been
supplied. A zero restart address will set the address of the internal warm boot
code on the stack as the return address.
restrt dc.l 0 internal restart
* do a warm boot (always zero)

dc.l 0 no extra information to print
* (always zero)

USING THE MRD FROM WITHIN YOUR SOFTWARE (C compiler)

THE DATA STRUCTURE

This the data structure used by C. note that they are all pointers except the
actual number_of_variable which is an int.
struct data_restart
{

int *restart;
int number_of_variables;
int *var1;
int *var2;
int *var3;

} exception_data;

The first thing we do is find the mrd. If it is not there then we cannot use it.

Quick Reference Applix 1616 Shareware Utilities # 1

char *name;
int mrd_number;

name = "EXCEPTION";

mrd_number = find_mrd(name);

This function is used to find an mrd by name if it present it will return the
number of the mrd each mrd in turn starting from zero. If it cannot find the mrd
then it will return -1 (a zero would be mrd zero).
int findmrd(name) /* find an MRD by name */
char *name; /* points to mrd’s name */
{
char *mrd_name; /* pointer returned by get mrd name */
int mrd_numb = 0; /* count the MRD’s as we go */

/* the while expression will test if this number MRD exists */

while(((int) (mrd_name = get_mrd_name(mrd_numb))) > 0)
{
if (strcmp(name, mrd_name)) /* is this the one */

mrd_numb += 1; /* no try the next
*/

else
return(mrd_numb); /* yes return its

number */
}

return(-1); /* MRD not found so say so */
}

The next step is to see if it was found.
if (mrd_number != -1)

{
printf("\n%s mrd number is %d\n\n",name, mrd_number);

At this point we know the mrd is present and we can use it. You must activate
the mrd before you can use it.
mrd_set = doit_mrd(mrd_number, &exception_data);

You insert whatever else you need here. You use the restart() function to set
your restart address. Be very carefull as this function will return ZERO if a
restart has occurred. If you have have called it then it will return the restart
address. You must call it TWICE the first time sets the address in exception-
_data structure, the second gives you the RESTART indication.
exception_data.restart = restart();

When a restart occurrs the exception handler will effectively return to this
expression and complete it. So save_restart_address will have ZERO if a restart
has occurred OR non zero if no restart has occurred.
save_restart_address = restart(); /* exception restart
*/

Test for a restart.
{
/* setup the mrd to our data */

Quick Reference Applix 1616 Shareware Utilities # 1

At this point we have been passed a valid pointer for the restart address
THEREFORE you are still setting up the MRD.
mrd_set = doit_mrd(mrd_number, &exception_data);

This enormous function actually activates the exception handler. The argument
value is the address of the exception_data structure if you are using the full
capabilities of the exception handler. IF not then set the argument to zero and
the restart will be a reset (level 2 if you’re lucky OR level 0 if you’re like me)
(once the reset button would not get me back to 1616o/s but that’s another story
and it’s NOT tall).
doit_mrd(number, argument) /* activate the mrd */
int number, argument;
{
int command = 7; /* doit */

return((int) callmrd(command, number, argument)); /* do it
*/
}

This is where you need to find out which vectors have been set IF this is import-
ant to your particular situation. If it is not important and you don’t need it then
don’t do this. The printf() functions would be replaced with some other code
supplied by you (SORRY I can’t do all the work).
if(mrd_set)
printf("system structure is set\n\n");
else
printf("user structure is set\n\n");
}
else
{

At this point you know that a restart has occurred so you will have to supply the
code to cope with this situation.
printf("a restart has occurred\n\n");

}

}

else /* else from if (save_restart_address) */
{

At this point the mrd has not been found. It is up to you to survive this situ-
ation. (YOUR problem not mine SORRY).
}

This function is used to set the data for the exception handler to print. This is a
poor example of how to do it but it does work and I am sure that you will work
out a better way because I have not had the time (sound familiar).

Quick Reference Applix 1616 Shareware Utilities # 1

set_exception_data(val1, val2, val3)
void *val1, *val2, *val3;
{
exception_data.number_of_variables = 3; /* print this many
variables*/
exception_data.var1 = val1;
exception_data.var2 = val2; /* these are pointers to vari-
ables */
exception_data.var3 = val3;
}

When you have finished with the handler or intend to exit from your software
then you must do the following.

DON’T FORGET THIS it may save you a lot of late nights.
stopit_mrd(mrd_number); /* finished so we deactivate mrd
*/

/* this function can save a lot of late nights (maybe) */

stopit_mrd(number) /* if you can’t work it out it’s
too LATE go to bed */
int number;
{
int command = 8; /* stopit */

callmrd(command, number, 0); /* no argument for stopit */
}

The source code TEST.C demonstrates the use of this mrd. It was actually used
to test the mrd and serves as a good example of how to use the exception
handler and the locate mrd’s. You may notice that this description is a direct
extract from that code.

PUTTING IT ALL TOGETHER
main()
{
char *name;
static int *save_restart_address;
static int mrd_number;
static int mrd_set;

name = "EXCEPTION";
set_exception_data(&exception_data, &mrd_number,

&name);
exception_data.number_of_variables = 3;
mrd_number = findmrd(name);

if (mrd_number != -1)
{
printf("\n%s mrd number is %d\n\n",name,

mrd_number);
exception_data.restart = restart();
save_restart_address = restart();

Quick Reference Applix 1616 Shareware Utilities # 1

if (save_restart_address)
{
mrd_set = doit_mrd(mrd_number,

&exception_data);

if(mrd_set)
printf("system

structure is set\n\n");
else

printf("user struc-
ture is set\n\n");

}
else

{
printf("a restart has occur-

red\n\n");
stopit_mrd(mrd_number);
exit(0);
}

}
else

printf("the %s mrd not found\n", name);

stopit_mrd(mrd_number);
}

int findmrd(name)
char *name;
{
char *mrd_name;
int mrd_numb = 0;

while(((int) (mrd_name = get_mrd_name(mrd_numb)))
> 0)

{
if (strcmp(name, mrd_name))

mrd_numb += 1;
else

return(mrd_numb);
}

return(-1);
}

char *get_mrd_name(number)
int number;
{
int mrd_name = 3;

return((char *) callmrd(mrd_name, number, 0));
}

void *callmrd(command, number, argument)
int command, number, argument;
{
int callmrd = 89;

return((char *) trap7(callmrd, number, command, argu-
ment));
}

Quick Reference Applix 1616 Shareware Utilities # 1

stopit_mrd(number)
int number;
{
int command = 8;

callmrd(command, number, 0);
}

doit_mrd(number, argument)
int number, argument;
{
int command = 7;

return((int) callmrd(command, number, argument));
}

set_exception_data(val1, val2, val3)
void *val1, *val2, *val3;
{

exception_data.number_of_variables = 3;
exception_data.var1 = val1;
exception_data.var2 = val2;
exception_data.var3 = val3;

}

I hope you find this program useful.

Quick Reference Applix 1616 Shareware Utilities # 1

factorial - evaluates factorials - Gerhard Baumann - SW#15

factorial [-v] number

Description

Evaluates factorials, provided they do not exceed 32768. On a 15 MHz
1616, factorial 100 took 1.82 seconds, 200 took 7.52 seconds, 300 took
17.66 seconds. I advise you leave large numbers to run overnight, and
redirect output to disk.

-v verbose output.

Associated files

factorial.xrel , factorial.s ,

Distribution

Applix 1616 Shareware Disk # 15 /baumann

Author

Converted from BASIC version in Your Computer, March 1989
by Gerhard Baumann

Quick Reference Applix 1616 Shareware Utilities # 1

ftree - find files and display directory trees - Michael Johnson -
SW#15

ftree [-s filename] [-d] [-f] [/dev]

Description

-s filename will search the device(s) specified for the file/sub-directory
filename and print all paths where it is found. The ’*’ can be used
in a filename as a wildcard. The name must be enclosed in quotes if
you use the wildcard. This will prevent the system from expanding
the wildcard within the current directory. NOTE: you must insert a
space between -s and the filename

-d print path and sub-directories only, no file names

-d print path and files only, no sub-directory names will be printed

/devuse this device(s), OR alter device table(s) OR use this directory only
(relative/absolute)

USE The -s -d -f are mutually exclusive. If one is specified then the rest are
not. e.g.

ftree -s ftree.xrel will only search for the filename ftree.xrel .

ftree -f will only print the paths and filenames.

ftree -d will only print the paths and directories.

ftree -s ftree.xrel -d will print the paths and directories AND search for
ftree.xrel .

ftree will print all sub-directories and filenames.

ftree /h1/shell will print all sub-directories and filenames starting at
sub-directory shell on device /h1 .

NOTE: If there are no filenames/sub-directories to print then the pathname will
not be printed.

/dev specifies which device(s) to search OR to change the device table(s)

PARAMETERS

filename any valid filename

/dev any valid device name, OR

/all to search all devices

/fx to search all floppy disc devices

/hx to search all hard disc devices

/cdt to change the device tables

NOTE: does not support volume names.

Quick Reference Applix 1616 Shareware Utilities # 1

If device = /cdt then a menu is displayed so that you may set the devices file to
suit your system. If you do not have a hard disc then set the hard disc with a null
input. The new devices will be used if you have specified /all /fx or /hx on
the command line.

DEVICES FILE

The devices are saved under the filename /SYSDEV/FTREE.DEV you will have
to assign /SYSDEV to a directory within your system. I suggest you insert that
assignment in your AUTOEXEC.SHELL file. If you do not have a hard disc then I
suggest you boot with a disc which will create this directory in your RAM disc
and assign /SYSDEV to this directory.

Examples

ftree will search the current device and print all pathnames, sub-directories
and files on that device.

ftree -d will search the current device and print all pathnames and sub-direc-
tories on that device.

ftree -f will search the current device and print all pathnames and filenames
on that device.

ftree -d /f0 will search floppy zero and print all pathnames and sub-direc-
tories on floppy zero.

ftree -s ftree.doc will search the current device for the file ftree.doc
and print all pathnames in which it is found. IF it is a sub-directory then the
pathname will be printed and the file will be shown as a sub-directory.

ftree -s ftree.doc /f0/special/doc will search the current device for
the file ftree.doc and print all pathnames in which it is found. IF it is a
sub-directory then the pathname will be printed and the file will be shown as a
sub-directory. It will start at sub-directory /f0/special/doc and search down
from there.

ftree -s ftree.doc /fx will search all floppies for the file ftree.doc and
print all pathnames in which it is found.

ftree /all will search all devices in the device file and
print all pathnames sub-directories and files on ALL devices.
CAUTION: will create heaps of output if you have a hard disc.

ftree /. will search from the current directory and print all pathnames sub-di-
rectories and files.

ftree /.. will search from the previous directory and print all pathnames
sub-directories and files.

ftree /../work will search from sub_directory WORK in the previous directory
and print all pathnames sub-directories and files.

Quick Reference Applix 1616 Shareware Utilities # 1

ftree /cdt -s ftree.doc /all
ftree -s ftree.doc /all /cdt
ftree /cdt /all -s ftree.doc
ftree /all /cdt -s ftree.doc
The four commands above will all do exactly the same thing.
1) open the "devices file" and allow you to edit the file.
2) search the devices in the altered (created) devices file for the file ftree.doc
and report all pathnames in which it was found.

ftree -d -s ftree.doc
1) searches the current device for the file ftree.doc and prints all pathnames
under which it is found.
2) prints all pathnames and sub-directories on the current device. NOTE: These
two functions are done concurrently and not consecutively.

ftree /cdt will allow you to alter or create the device table in the devices file.
No output information will be printed from any devices.
1) floppy devices
2) hard disc devices
3) all devices

ftree -s "ftr*" will search the current device for all sub-directories and file-
names that start with "FTR" and print their pathname. e.g. FTREE.C
FTREE.DEV FTREE.XREL

ftree -s "*ee*.c will search the current device for all sub-directories and
filenames that include "ee" and print their pathname. e.g. FTREE.C SCREEN.C

Associated files

ftree.c, devices.c, top-print.c, ftree.doc, /sys-
dev/ftree.dev

Distribution

Applix 1616 Shareware Disk #15 /johnson

Author

This version 2.2, 31/7/1989, suggested donation $10. Michael Johnson,
11/12 Kokoda St, Wagga Wagga, NSW 2650, (069) 255255

Quick Reference Applix 1616 Shareware Utilities # 1

getty - restricted shell via serial port - Andrew McNamara -
SW#15

getty [sb:] [-u id] [-malrwx] [-c barfile]

Description

Makes it easy to run multiple users on a 1616, by providing an (optionally)
restricted shell via one of the serial ports. Use getty to start iexec on
serial port sa: (default) or (optionally) on sb: .

-u ID Select a User Identification number for the new shell. 0 is nor-
mally unrestricted, 1 to 65535 can be used.

-m Umask to be set for the new shell. The options here are the normal
directory attribute bits for files, and determine the default attribute
condition of new files.
a Archive bit set.
l Locked file bit set.
r Read by owner only.
w Write by owner only.
x EXecute by owner only.

-c barfile is simply a file containing the list of 1616 commands to be
locked out of use for this particular shell. See fred for an typical
lockout file.

Examples

getty
Use serial port sa:, with all commands allowed.
getty sb:
Use serial port sb:, with all commands allowed.
getty sa: -cfred
Use serial port sa: The file fred contains a list of all commands to lock
out of action.

Quibbles

Associated files

getty.c, getty.use, getty.xrel, fred

Distribution

Applix 1616 Shareware Disk #15 /McNamara

Author

Andrew McNamara

Quick Reference Applix 1616 Shareware Utilities # 1

hs - Help for system calls - Conal Walsh - SW#13

hs name or number

Description

A quick and dirty program to aid you in recalling how the various 1616/OS
system calls are used.

The name can be any 1616/OS call name (or an abbreviation of one), while
number can be any 1616/OS number.

Examples

hs freet gives help for freetone call.
hs .31 gives help for set_640 call.

Quibbles

You will probably have to chmem it prior to use.
Wom’t work on early version 1616/OS.

Associated files

-readme, c1616.c, c1616.xrel, convhc.c, convhc.xrel,
h.bak, h.shell, hcgrap.csh, hcgrap.rch, help.bak , all in
/c1616, which is a later highly developed generalised version.

-readme, helpsys.as, hs.xrel

See also

c1616

Distribution

Applix 1616 Shareware Disk #13 /helpsys

Author

Conal Walsh

Quick Reference Applix 1616 Shareware Utilities # 1

indent - C programs formatter- Andrew Morton - SW#10

indent [input-file [output-file]] [-bad | -nbad] [-bap
| -nbap] [-bbb | -nbbb] [-bc | -nbc] [-bl] [-br] [
-cn] [-cdn] [-cdb | -ncdb] [-ce | -nce] [-cin] [
-clin] [-dn] [-din] [-fc1 | -nfc1] [-in] [-ip | -nip
] [-ln] [-lcn] [-lp | -nlp] [-pcs | -npcs] [-npro] [
-psl | -npsl] [-sc | -nsc] [-sob | -nsob] [-st] [
-troff] [-v | -nv]

Description

Indents and formats C program source. It reformats the C program in the
inputfile according to the numerous switches. If no output filename is
given, a backup copy of the input file is made with the extension .bak , and
the input file name is used for the output file. If outputfile is specified,
indent checks that the name is different to inputfile .

The numerous switches can appear before or after the file names.

NOTE: If you only specify an input-file, the formatting is done ‘in-place’,
that is, the formatted file is written back into input-file and a backup copy
of input-file is written in the current directory. If input-file is named
/blah/blah/file , the backup file is named file.BAK .

If output-file is specified, indent checks to make sure it is different from
input-file.

OPTIONS The options listed below control the formatting style imposed by
indent.

-bap,-nbap If -bap is specified, a blank line is forced after every pro-
cedure body. Default: -nbap.

-bad,-nbad If -bad is specified, a blank line is forced after every block of
declarations. Default: -nbad.

-bbb,-nbbb If -bbb is specified, a blank line is forced before every block
comment. Default: -nbbb.

-bc,-nbc If -bc is specified, then a newline is forced after each comma
in a declaration. -nbc turns off this option. The default is
-bc.

-br,-bl Specifying -bl lines up compound statements like this:
if (...)
{
 code
}
Specifying -br (the default) makes them look like this:

Quick Reference Applix 1616 Shareware Utilities # 1

if (...) {
 code
}

-cn The column in which comments on code start. The default is
33.

-cdn The column in which comments on declarations start. The
default is for these comments to start in the same column as
those on code.

-cdb,-ncdb Enables (disables) the placement of comment delimiters on
blank lines. With this option enabled, comments look like
this:
/*
* this is a comment
*/
Rather than like this:
/* this is a comment */
This only affects block comments, not comments to the right
of code. The default is -cdb .

-ce,-nce Enables (disables) forcing ‘else’s to cuddle up to the imme-
diatly preceeding ‘}’. The default is -ce .

-cin Sets the continuation indent to be n. Continuation lines will
be indented that far from the beginning of the first line of the
statement. Parenthesized expressions have extra indentation
added to indicate the nesting, unless -lp is in effect. -ci
defaults to the same value as -i.

-clin Causes case labels to be indented n tab stops to the right of
the containing switch statement. -cli0.5 causes case labels to
be indented half a tab stop. The default is -cli0.

-dn Controls the placement of comments which are not to the
right of code. The default -d1 means that such comments are
placed one indentation level to the left of code. Specifying
-d0 lines up these comments with the code. See the section
on comment indentation below.

-din Specifies the indentation, in character positions, from a dec-
laration keyword to the following identifier. The default is
-di16 .

-fc1,-nfc1 Enables (disables) the formatting of comments that start in
column 1. Often, comments whose leading ‘/’ is in column 1
have been carefully hand formatted by the programmer. In
such cases, -nfc1 should be used. The default is -fc1.

-in The number of spaces for one indentation level. The default
is 4.

Quick Reference Applix 1616 Shareware Utilities # 1

-ip,-nip Enables (disables) the indentation of parameter declarations
from the left margin. The default is -ip .

-ln Maximum length of an output line. The default is 75.

-npro Causes the profile files, ‘./.indent.pro’ and ‘~/.indent.pro’, to
be ignored.

-lp,-nlp Lines up code surrounded by parenthesis in continuation
lines. If a line has a left paren which is not closed on that
line, then continuation lines will be lined up to start at the
character position just after the left paren. For example, here
is how a piece of continued code looks with -nlp in effect:
 p1 = first_procedure(second_procedure(p2,
p3),
 third_procedure(p4, p5));
With -lp in effect (the default) the code looks somewhat
clearer:
 p1 = first_procedure(second_procedure(p2,
p3),
 third_procedure(p4,
p5));
Inserting a couple more newlines we get:
p1 = first_procedure(second_procedure(p2,
 p3),
 third_procedure(p4,
 p5));

-pcs , -npcs If true (-pcs) all procedure calls will have a space inserted
between the name and the ’(’. The default is -npcs

-psl , -npsl If true (-psl) the names of procedures being defined are
placed in column 1 - their types, if any, will be left on the
previous lines. The default is -psl

-sc,-nsc Enables (disables) the placement of asterisks (‘*’s) at the left
edge of all comments.

-sob,-nsob If -sob is specified, indent will swallow optional blank lines.
You can use this to get rid of blank lines after declarations.
Default: -nsob

-st Causes indent to take its input from stdin, and put its output
to stdout.

-Ttypename Adds typename to the list of type keywords. Names accu-
mulate: -T can be specified more than once. You need to
specify all the typenames that appear in your program that
are defined by typedefs - nothing will be harmed if you miss
a few, but the program won’t be formatted as nicely as it
should. This sounds like a painful thing to have to do, but

Quick Reference Applix 1616 Shareware Utilities # 1

it’s really a symptom of a problem in C: typedef causes a
syntactic change in the laguage and indent can’t find all
typedefs.

-troff Causes indent to format the program for processing by troff.
It will produce a fancy listing in much the same spirit as
vgrind. If the output file is not specified, the default is stan-
dard output, rather than formatting in place.

 -v,-nv -v turns on ‘verbose’ mode, -nv turns it off. When in ver-
bose mode, indent reports when it splits one line of input into
two or more lines of output, and gives some size statistics at
completion. The default is -nv.

FURTHER DESCRIPTION
You may set up your own ‘profile’ of defaults to indent by creating a file
called .indent.pro in either your login directory or the current directory and
including whatever switches you like. A ‘.indent.pro’ in the current direc-
tory takes precedence over the one in your login directory. If indent is run
and a profile file exists, then it is read to set up the program’s defaults.
Switches on the command line, though, always override profile switches.
The switches should be separated by spaces, tabs or newlines.

Comments

‘Box’ comments. Indent assumes that any comment with a dash or star
immediately after the start of comment (that is, ‘/*-’ or ‘/**’) is a comment
surrounded by a box of stars. Each line of such a comment is left
unchanged, except that its indentation may be adjusted to account for the
change in indentation of the first line of the comment.

Straight text. All other comments are treated as straight text. Indent fits as
many words (separated by blanks, tabs, or newlines) on a line as possible.
Blank lines break paragraphs.

Comment indentation

If a comment is on a line with code it is started in the ‘comment column’,
which is set by the -cn command line parameter. Otherwise, the comment
is started at n indentation levels less than where code is currently being
placed, where n is specified by the -dn command line parameter. If the
code on a line extends past the comment column, the comment starts
further to the right, and the right margin may be automatically extended in
extreme cases.

Preprocessor lines

In general, indent leaves preprocessor lines alone. The only reformmatting
that it will do is to straighten up trailing comments. It leaves imbedded
comments alone. Conditional compilation (#ifdef...#endif) is recognized
and indent attempts to correctly compensate for the syntactic peculiarites
introduced.

Quick Reference Applix 1616 Shareware Utilities # 1

C syntax

Indent understands a substantial amount about the syntax of C, but it has a
‘forgiving’ parser. It attempts to cope with the usual sorts of incomplete
and misformed syntax. In particular, the use of macros like: #define for-
ever for(;;) is handled properly.

BUGS

Indent has even more switches than ls.

A common mistake that often causes grief is typing:indent *.c to the shell
in an attempt to indent all the C programs in a directory. This is probably a
bug, not a feature.

Associated files

args.c, indent.1, indent.c, indent.man, indent.shell,
indent_codes.h, indent_globs.h, io.c, lexi.c, makefile,
parse.c, pr_comment.c, -indent.xrel

Distribution

Applix 1616 Shareware Disk # 10 /indent 192 blocks

Author

Ported to 1616 by Andrew Morton.

Quick Reference Applix 1616 Shareware Utilities # 1

kmem - C storage allocator - Andrew Morton - SW#6

kmem

Description

C storage allocator for Z80 and other 8 bit systems.

Associated files

kmem.c ,

Distribution

Applix 1616 Shareware Disk # 6

Author

Andrew Morton.

Quick Reference Applix 1616 Shareware Utilities # 1

kv - prints keyboard scan codes - Andrew Morton - SW#6

kv

Description

Prints the keyboard scan codes produced by your particular key-
board.Given the somewhat strange results some "standard" keyboard pro-
duce, this could be handy when you are writing something that needs to
know what the keyboard really produces.

Quibbles

Associated files

kv.exec, kv.s

See also

scan Jeremy Fitzhardinge also produced a keyboard scan code program.

Distribution

Applix 1616 Shareware Disk #6 /tutorial

Author

Andrew Morton(?)

Quick Reference Applix 1616 Shareware Utilities # 1

lfk - define function keys - Cameron Hutchison - SW#15

lfk fkey_def_file

Description

Takes a file with function key definitions in it, and programs the function
keys specified.

If the last character in a line is | replaces it with a carriage return.

The fkey_def_file contains lines as follows:
nF_key_def
where n is from 1 to 0 (0 is F10). There must be a carriage return at the
end of the file.

Associated files

lfk.s, lfk.xrel

Distribution

Applix 1616 Shareware Disk # 15 /lfk

Author

Cameron Hutchison, 9/4/1989.

Quick Reference Applix 1616 Shareware Utilities # 1

lisp - ai language - Andrew Morton - SW#8

lisp

Description

Language often used by ai.

Quibbles

I couldn’t persuade it to do squat all.

Associated files

fact.lsp, fib.lsp, hanoi.lsp, lisp.doc (extensive),
lisp.xrel, pp.lsp, queens.lsp, queens2.lsp, readme.txt,
simplepp.lsp, starter.bak, starter.doc , also /lisp/source,
/lisp/untested

See also

Distribution

Applix 1616 Shareware Disk #8 /lisp, /lisp/source, /lisp/untested 155
blocks in /lisp

Author

Original version 1.6 by David Betz, Jan 6, 1986.
Conversion to Applix 1616 by Andrew Morton

Quick Reference Applix 1616 Shareware Utilities # 1

locate - MRD to find data in memory, by Michael Johnson -
SW#5

author :- MICHAEL JOHNSON, WAGGA WAGGA
program name :- LOCATE.MRD
program source code :- LOCATE.S
date :- 16-8-88
version :- 1.1
document issue :- 2

LOCATE MRD

This mrd is used to find out where your data is stored in memory. This will
allow you to inspect these variables via the trap #1 (ssasm) or the trap_one()
function (C) which use the exception handler. When the trap exception is
executed type "LOCATE" from 1616o/s command level and note the addresses
given.

It is not essential to use this mrd via the trap #1 (ssasm) trap_one() function (C)
but it is advisable. To use the mrd after exit from program do not deactivate the
mrd before you exit your program and it will still work.

You can then use the memory dump commands (MDB, MDW, MDL) to inspect
these locations. This will give you an idea of what this mrd is capable of par-
ticularly with .XREL program files. This mrd will assist in eliminating the need
for .EXEC program files. The data structures and call routines can be removed
when your software is fully debugged or you may leave them in the code (your
choice).

DO NOT leave trap #0 or trap #1 in your code or you might get a nasty sur-
prise!

HOW TO USE THE LOCATE MRD

The way to use the LOCATE mrd is to ensure that your software activates the
mrd and that you have also supplied a valid data structure (explained later).

METHOD

1) Run your software and when it finishes type "locate" at 1616o/s command
level and it will print your information. NOTE to use this method do not deacti-
vate the locate mrd before you exit your software.

2) Activate the exception handler with the "exception" command. Make sure
it says that the MRD vectors are set. IF the 1616o/s vectors are set then repeat
the command. Run your software with the trap #1 (ssasm) OR trap_one() (C)
inserted into your software at the appropriate locations. When the exception
executes you then type "locate" and your information will be printed. NOTE

Quick Reference Applix 1616 Shareware Utilities # 1

deactivate the mrd before you exit from your software. When you are finished
you then input command "exception" at 1616o/s level and make sure that the
1616o/s vectors are set.

3) Activate the exception mrd and the locate mrd from within your software
and simply run your software with the trap #1 (ssasm) OR trap_one() (C)
inserted into your software at the appropriate locations. When the exception
executes you then type "locate" and your information will be printed. NOTE
deactivate both mrd’s before you exit.

RECOMMEND method is method 2

You only use method 3 if you are also debugging an address, buss or illegal
instruction error.

NOTE The trap_one() function is supplied on this disc in LIBE.LIB in the
sub-directory LIBRARY (see documentation of this disc DISC.DOC).

THE MRD COMMAND FUNCTIONS AND USES

RESETS

A reset (all levels) will set the data structure pointer to zero. The enable flag is
also set to enabled. Return value is 0.

ENABLE

This command does not require an argument. It will re-enable the mrd if it is
disable. Return value is 0.

DISABLE

The MRD is disabled when this command is sent to it. No argument is
required. The data structure pointer is set to zero. Return value is 0.

DOIT

The doit command requires an argument which is a pointer to your data struc-
ture (explained later). If the mrd is disabled then this will return -1 to indicate
that the mrd is disabled. If the pointer you supplied was found to be invalid
then it will set it’s own pionter and return 1. If your pointer is valid and used
then it will return 0.

STOPIT

The MRD is deactivated when this command is sent to it. No argument is
required. The data structure pointer is set to zero. The enable flag remains
active. Return value is 0 if all is ok IF the mrd is disabled then it will return -1.

VERSION

Quick Reference Applix 1616 Shareware Utilities # 1

This command will return the version of the MRD as documented in 1616
technical reference manual. The first MRD version is 1.1 (hopefully this will
not need any updating).

NAME

This command will return a pointer to the MRD’s name LOCATE as docum-
ented in the 1616 technical reference manual.

EXECENTRY

This command will return a pointer to the MRD’s name command level entry
address as documented in the 1616 technical reference manual.

COMMAND LEVEL USAGE OF THE LOCATE MRD

The LOCATE mrd requires the user to supply a pointer to a data structure
within their program. The command level is designed to be used from within
the users software via the trap #1 instruction (assembler) or the trap_one() func-
tion (C compiler). However it can be used after the program has been exited
IF the mrd was not disabled or the stopit command has not be sent by your
software. The LOCATE mrd will check to see if the pointer is set, if not it will
print "pointer not set". IF the pointer is set but points to a long word (int in C)
which is zero then it will print "no data available".

USING THE MRD FROM WITHIN YOUR SOFTWARE (assembler)

The first step is to make sure that the LOCATE MRD is loaded. To do this we
look for it by name and at the same time we also find its call value and store it.
All of the following code is written to be relocatable without any changes.

First we must find the MRD. If it is not present then we can’t use it. The fol-
lowing equates are used in this example.
callmrd equ 89 call mrd syscall
doit equ 7 doit mrd command
stopit equ 8 stopit mrd command
mrdname equ 3 find mrd name

* find the LOCATE mrd

lea name(pc),a2 get address of name
move.l #0,d7 mrd’s are zero numbered
move.l #mrdname,d2 get name command

tstmrd move.l d7,d1 load the MRD number
move.l #mrdname,d2 command to get the

name pointer
move.l #callmrd,d0 call the driver
trap #system

tst.l d0 found one
bmi retrn no must have been through them

all

* we have a name now test for a match

Quick Reference Applix 1616 Shareware Utilities # 1

move.l d0,a0 mrd’s name from callmrd
move.l a2,a1 name we are looking for

cmptst cmp.b (a0)+,(a1)+ test character by
character

bne next not this mrd try next
tst.b (a0) end of name
beq found yes we found it
bra cmptst no test next character

next addq.l #1,d7 no wrong one try the next
bra tstmrd

* name of MRD

name dc.b ’LOCATE’,0,0 locate mrd

This section of code is used when the MRD cannot be found. You will
need to formulate this section to fit your situation.
retrn ???? code to handle this situation

The MRD has been found so now you setup the data structure.

The MRD must be activated. The doit command requires an argument which is
a pointer to the data structure.

lea locate(pc),a0 address of data
structure (argument)

lea mrdnum(pc),a1 get address of
number

move.l (a1),d1 load the MRD number
move.l #doit,d2 command to activate it
move.l #callmrd,d0 call the driver
trap #system
tst.l d0 is it enabled
bmi disabled no
beq notset the pointer was not set (in-

valid)

At this point the MRD has been activated and loaded with the information it
requires to operate.

BEFORE YOU EXIT BACK TO 1616O/S

IF you have activated the MRD then it is advisable to deactivate the MRD
before you exit from your program (not absolutely neccessary but be neat and
do it). This is a very simple procedure which requires no argument. The fol-
lowing code will achieve this :-
* deactivate the LOCATE mrd and reset the structure pointer
and
* restore 1616o/s vectors in the vectore table

lea mrdnum(pc),a1
move.l (a1),d1 mrd number
move.l #stopit,d2 deactivate will reset the

* data structure pointer
move.l #callmrd,d0 call the driver
trap #system

Quick Reference Applix 1616 Shareware Utilities # 1

You are able to exit from your program safely at this point.

THE DATA STRUCTURE
number equ 3 this many variables in locate
structure

var3 dc.l 0 some variable you have used

numstr dc.b ’mrd driver number’,0
locstr dc.b ’address of locate data structure’,0
var3st dc.b ’variable var3’,0

locate dc.l number number of variables to locate
dc.l mrdnum address of the first variable
dc.l numstr address of string description
dc.l locate address of this data structure
dc.l locstr address of string description
dc.l var3
dc.l var3st etc.....

USING LOCATE MRD FROM C COMPILER

THE DATA STRUCTURE

This structure is an example of the structuer used by the LOCATE mrd it gives
the pointers and string labels for use by the mrd. NOTE the structure only con-
tains pointers to the strings and variables.
struct data_locate
{
int number_of_variables;
int *var1; /* variable address
1 */
char *varst1; /* pointer to string ident */

int *var2;
char *varst2;
int *var3;
char *varst3;

} locate_data;

FINDING THE MRD

The LOCATE mrd must be present before we can use it. Therefore we must
now look for the mrd. The following is an extract from the function which will
be doing the call to find_mrd(). (a later example will put this together).
char *name;
int mrd_number; /* uses this mrd */

name = "LOCATE";
mrd_number = findmrd(name); /* find mrd LOCATE */

This function is used to find an mrd by name if it present it will call each mrd in
turn starting from zero. if it cannot find the mrd then it will return -1 (a zero
would be mrd zero).

Quick Reference Applix 1616 Shareware Utilities # 1

int findmrd(name) /* find an MRD by name */
char *name; /* points to mrd’s name */
{
char *mrd_name; /* pointer returned by get mrd name */
int mrd_numb = 0; /* count the MRD’s as we go */

/* the while loop will test if this number MRD exists */

while(((int) (mrd_name = get_mrd_name(mrd_numb))) > 0)
{
if (strcmp(name, mrd_name)) /* is this the one */

mrd_numb += 1; /* no try the next */

else
return(mrd_numb); /* yes return its number */
}

return(-1); /* MRD not found so say so */
}

The next step is to make sure that the MRD was found. If it was not found then
you will need to supply the code to suit your situation in this case we have just
printed it was not found and then exited to the calling function.
if (!mrd_number) /* did we find it */

{
printf("cannot find %s mrd\n", name);
return(0);
}

Here we have found the mrd and simply state what the mrd number is. You
then setup the locate_data structure with the following code. This data may
have been set up previously and from within different functions. I would
strongly suggest that you make each variable static when being used by the
locate mrd and when you are satisfied with its performance then you can
remove the static keyword and make it auto if neccessary.
printf("%s is mrd number %d\n", name, mrd_number);

varst1 = "name of mrd in test_locate()";
varst2 = "mrd number in test_locate()";
varst3 = "location of locate_data structure";

locate_data.var1 = (int*) name;
locate_data.varst1 = varst1;
locate_data.var2 = &mrd_number;
locate_data.varst2 = varst2;
locate_data.var3 = (int*) &locate_data;
locate_data.varst3 = varst3;
locate_data.number_of_variables = 3;

When all this has been done you simply activate the mrd and supply the
ADDRESS of the locate_data structure as an argument.
doit_mrd(mrd_number, &locate_data);

 This enormous function actually activates the locate mrd. The argument value
is the address of the locate_data structure.

Quick Reference Applix 1616 Shareware Utilities # 1

doit_mrd(number, argument) /* activate the mrd */
int number, argument;
{
int command = 7; /* doit */

return((int) callmrd(command, number, argument)); /* do it
*/
}

Before you exit it is not essential to deactivate the mrd but to keep things tidy it
is a good idea. IF YOU SET IT THEN RESTORE IT !!!!!

AN EXCEPTION TO THIS IS if you are not using the trap_one() function in
the exception handler in which case when your program has returned to 1616o/s
you can simply type "locate" and it will print your data for you. However, the
values of your variables may not be valid.
stopit_mrd(mrd_number); /* it’s nice to be safe */

This function can save a lot of late nights (maybe).
stopit_mrd(number) /* if you can’t work it out it’s
too LATE go to bed */
int number;
{
int command = 8; /* stopit */

callmrd(command, number, 0); /* no argument for stopit */
}

The following group of functions are used by the previously described func-
tions. They are self explanatory (I hope).
char *get_mrd_name(number) /* get the pointer to the MRD’s
name */
int number;
{
int mrd_name = 3;

return((char *) callmrd(mrd_name, number, 0));
}

void *callmrd(command, number, argument) /* do this command
with this MRD */
int command, number, argument;
{
int callmrd = 89; /* system call for callmrd */

return((char *) trap7(callmrd, number, command, argument));
}

PUT IT ALL TOGETHER

The following function was used to test the locate mrd. It is the combination of
all the parts described above. The file TEST.C in the source directory will give
a complete working example of this mrd BUT be carefull it also uses the excep-
tion handler.

Quick Reference Applix 1616 Shareware Utilities # 1

testing()
{
int mrd;

mrd = test_locate();
stopit_mrd(mrd); /* it’s nice to be safe */

}

/* This function will test the LOCATE mrd */

test_locate()
{
char *name, *varst1, *varst2, *varst3;
int mrd_number; /* uses this mrd */

name = "LOCATE";
mrd_number = findmrd(name); /* find mrd LOCATE */

if (!mrd_number)
{
printf("cannot find %s mrd\n", name);
return(0);
}

printf("%s is mrd number %d\n", name, mrd_number);

/* now insert the data into the locate_data structure */

varst1 = "name of mrd in test_locate()";
varst2 = "mrd number in test_locate()";
varst3 = "location of locate_data structure";

locate_data.var1 = (int*) name;
locate_data.varst1 = varst1;
locate_data.var2 = &mrd_number;
locate_data.varst2 = varst2;
locate_data.var3 = (int*) &locate_data;
locate_data.varst3 = varst3;
locate_data.number_of_variables = 3;

doit_mrd(mrd_number, &locate_data);

return(mrd_number);

}

/* NEAT AY */

I hope you find this program very usefull

KIND REGARDS
MICHAEL JOHNSON

(069) 255255

(I tried for 25 1616 but alas it was not available)

Quick Reference Applix 1616 Shareware Utilities # 1

makeega - run Hercules monitor as EGA - Lindsay Washusen -
SW#15

makeega

Description

Tweak Conal Walsh’s EGA driver 6545 register values so it runs a Her-
cules style monochrome monitor in reasonable sytle.

Associated files

makeega.shell

Distribution

Applix 1616 Shareware Disk # 15

Author

Lindsay Washusen.

Quick Reference Applix 1616 Shareware Utilities # 1

mem - memory free report - Andrew McNamara - SW#15

mem

Description

Reports on the amount of memory free. The report includes the largest
block free, the largest allocatable block available, the kludge factor cur-
rently in use (see the Programmers Manual for details), and the total mem-
ory free.

Examples

Quibbles

Associated files

mem.c, mem.xrel

See also

Distribution

Applix 1616 Shareware Disk #15 /McNamara

Author

Andrew McNamara

Quick Reference Applix 1616 Shareware Utilities # 1

modem - Xmodem file transfer - Mark Harvey - SW#1, SW#2

modem sa: [sb:]

Description

Configure the selected serial port to the correct baud rate using the 1616
serial command before starting the program. Type help pretty much any
time to get the menu back.

Menu driven.

Full Full duplex, with no echo of characters.

Half Half duplex, with local echo.

xx Transmit file using xmodem.

yx Transmit file using ymodem

rx Receive file using xmodem.

system Return to operating system.

Move back one menu level, or stop a transfer.

Exec an operating system command.

Examples

Quibbles

xrel files often get scrambled going to BBS - reason is that any xmodem
protocol can add up to 128 bytes to the last block of the file, due to the
nature of the protocol. Somewhat dated.
Does not strip parity bit in terminal mode. Do not use it to transfer 8 bit
files within a 7 bit environment.

Associated files

modem.exec, modem.mac, modem.s, modem.doc

See also

rb , sb, sealink(?)

Distribution

Applix 1616 Shareware Disk #1 /utilities (V1.1, 25-10-1987), #2 /modem
(V1.2, 4-3-1988)

Author

Applix version by Mark Harvey

Alt c

]

Quick Reference Applix 1616 Shareware Utilities # 1

modem32 - menu driven file transfer program - Sid Young -
SW#6

modem32

Description

Demo version of a nice, menu driven modem program, with xmodem pro-
tocol, tested with MicroBe Telecom program. Ymodem support is
expected in future.

File upload and file download, save buffer to disk.

Selectable com port, data rates, full and half duplex, dial, redial, etc.

Quibbles

Associated files

modem32.exec , modem32.s , modem32.doc

See also

modem

Distribution

Applix 1616 Shareware Disk # 6/utilities/sid

Author

Sid Young

Quick Reference Applix 1616 Shareware Utilities # 1

more - formats text files for viewing - Matthew Gardner - SW#15

more [files ...]

Description

More is a filter which allows examination of continuous text, one screenful
at a time, on a display. It knows about wildcards and pathnames. It is
retained in UNIX for backward compatibility (there are better versions,
such as less). This version has more features than the C version from
Andrew Morton.

If no filename is given, more assumes it is reading from a pipe, or standard
input. Use whatever your EOF character is (,) to exit in this
case.

It pauses after each screenful, printing -More- at the bottom of the screen.
If the user type , , or almost any other character, another
screenful is displayed. Use it instead of type or edit for reading a file.
Other characters used interactively include:

b, B, Backwards a page, to see previous page.

h, H Help, a list of available commands is shown.

q, Q Quit to next file, exit from more if last file.

? Help, a list of available commands.

Exit from more .

/ pattern. Search forward for pattern .
A lower case pattern will find both upper and lower case
matches. A pattern starting with Upper case will find both
upper and lower case matches. An UPPER case only pattern
will find only an UPPER case match.

n, N Next occurrence of previous pattern.

Examples

A sample usage of more (in UNIX) in previewing roff output would be

roff -s +2 doc.n | more

Bugs

When first invoked, the first line of the file is lost off the top of the display.

Associated files

more.s

Ctrl d Ctrl z

Space Enter PgDn

PgUp

Esc

Quick Reference Applix 1616 Shareware Utilities # 1

See also

cat, cio, pr, roff , more.c

Distribution

Applix 1616 Shareware #15 /gardner

Author

Matthew Gardner, Box 8021, Palmerston North, New Zealand

Quick Reference Applix 1616 Shareware Utilities # 1

nswp32 - bulk file copy, delete, view utility - Sid Young - SW#6

nswp

Description

A menu driven file copy, delete, and view utility, intended to handle files
in bulk by "tagging" those to be acted upon. Probably similar to CP/M
sweep utility. Looks like an excellent starting point for a full "tree" style
file manager.

Retag a file.
Back one file.
Copy a file.
Delete a file.
Find a file (not yet implemented).
Help.
Log new drive.
Mass copy tagged files.
Rename a file.
Status display.
Tag a file.
Untag a file.
View contents of file.
Exit from view or program.
To next directory.
Back one directory.

Quibbles

The present version is fairly slow in operation.
Had problems with the display of directories, perhaps due to sub-directory
prompts.
Bombed on exit, had to do a power down to recover.
I’m not sure Sid’s hard coded approach is wise, given the rapidity of
changes to 1616/OS. Changes probably wouldn’t affect it as much if the
directory information were stored in strings, and passed direct to Andrew’s
routines.

Associated files

nswp.xrel , nswp.s

See also

ftree

Distribution

Applix 1616 Shareware Disk # 6/utility/sid

a

b

c

d

f

h

l

m

r

s

t

u

v

x

/

\

Quick Reference Applix 1616 Shareware Utilities # 1

Author

Sid Young
Suggested donation $5

Quick Reference Applix 1616 Shareware Utilities # 1

pfile - menu driven flat file data base - Paul Cahill - SW#4

pfile.bas

Description

Menu driven flat file data base, written in SSBASIC, using disk files.
Allows viewing of available file names, creation of new data bases, view-
ing of all data, or search for specific information.

Printer output is allowed, including output of specific records as they are
located (very handy).

One very nice feature is that Paul has provided a large range of electronic
and computing related data files, mainly relating to Electronics Australia,
from 1976 to August 1988. I expect I’ll be spending far less time search-
ing through back issues as a result of Paul’s efforts in entering this infor-
mation.

Quibbles

Associated files

pfile.bas
1616owners.f, ea-cdi80.f, ea-errata.f, ea-index70.f,
ea-index80.f, ea-microconst80.f, ea-pc80.f, ea-theory.f,
ea-tvs.f

See also

grep, sort

Distribution

Applix 1616 Shareware Disk # 4/database

Author

Paul Cahill, 65 Labrador Street, Rooty Hill, NSW 2766

Quick Reference Applix 1616 Shareware Utilities # 1

prog? - Assembler tutorial examples - Kathy Morton - SW#1

prog?

Description

prog1 Add 48 to a set of numeric values held as data, print the ASCII
equivalent.

prog2 Load text into a buffer, then display it.

prog3 Sorts and prints valid ASCII codes

prog4 Parameter passing program, prints a message.

prog5 Passes a message via the stack.

prog6 Analyses petrol consumption and mileage figues of data declared
in program.

prog7 Sorts a set of ASCII characters alphabetically.

Quibbles

The conversion to Applix isn’t always elegant in these tutorials ... on the
other hand, if it were, it might be too different to the book to allow novices
to follow it. Catch 22.

Associated files

See also

prog?.s

Distribution

Applix 1616 Shareware Disk #1 /tutorial

Author

Original version by Robert Erskine, in First Steps in Assembly Language

Conversion to Applix 1616 by Kathy Morton

Quick Reference Applix 1616 Shareware Utilities # 1

ps3 - process status nice value - Matthew Geier or Andrew McNa-
mara - SW#15

ps3

Description

A variation on the usual ps command, this gives a brief ps which includes
the nice value.

Associated files

ps3.c

Distribution

Applix 1616 Shareware Disk # 15 /geier /McNamara

Author

Matthew Geier or Andrew McNamara, both from an Andrew Morton orig-
inal.

Quick Reference Applix 1616 Shareware Utilities # 1

quick - mrd to speed up processing - Andrew Morton - SW#9

quick.mrd

Description

A memory resident driver, intended to speed up processing in 15 MHz
models by shutting down most of the excess overhead associated with
video refresh. This cuts out the 4 wait states when running video, by not
actually displaying more than a few lines.

quick on Fast processing, 4 lines displayed.

quick off Normal display, slowest processing.

quick nn Number of display rows, 2 to 24.

quick enable

quick disable

Examples

Quibbles

Associated files

quick.s, quick.mrd

See also

dhrystone

Distribution

Applix 1616 Shareware Disk #9 /15mhz

Author

Andrew Morton

Alt Shift Q

Alt Shift U

Alt Shift D

Quick Reference Applix 1616 Shareware Utilities # 1

quindex - quick index - Michael Johnson - SW#5

quindex

Description

Menu driven quick index program, from which to launch other executable
programs. Designed to provide a user friendly shell for people playing
games, etc. Very elegant and attractive appearance. You set it up with a
set of descriptive names, filepaths, and filenames, for the programs it can
display. Intended more for hard disk users, but should run from floppy
also.

It expects to find a datafile in /sysdev/quindex.file .

It has four modes of operation, selected via the and keys, while
 exits to 1616/OS. The key makers a temporary exit to 1616/OS

(return by using quit).

Execute Use arrow keys to select an entry, key to execute the
selected program. It will return to quindex after exit from the
program. goes to the first entry, takes you to the last
entry.

Edit Change the displayed name, directory, or executable command.
Use cursor keys to move, to slect an item for editing.

Delete Get rid of an entry.

Insert Displays boxes for entry of the name (14 characters maximum),
directory, and executable command line to be sent to 1616/OS. If
last entry in this is [you can add parameters prior to execution.

Examples

Quibbles

Every time I write this up, Michael adds more features. This is now a very
powerful menu system, which will make it easy for those unfamiliar with
computers to use programs.

Associated files

ccquindex.shell, quindex.c, quindex.h, quindex.obj, quin-
dex.xrel, quindex1.c, quindex.obj

See also

ftree

PgUp PgDn

Esc F1

Enter

Home End

Enter

Quick Reference Applix 1616 Shareware Utilities # 1

Distribution

Applix 1616 Shareware Disk #5 /quindex

Author

Suggested donation $5. Michael Johnson

Quick Reference Applix 1616 Shareware Utilities # 1

rb - receive yam or ymodem files - Colin McCormack - SW#3

rb [-7buv] [-sA] [-sB]
rb [-1bcuv] filename

Description

Receives binary files over serial port from a computer running YAM or
ymodem, and places the file in filename . Supports CRC or checksum.
Log of activities is maintained in rblog .

-7 mask is octal 0177

-b binary option, with ̂Z as end of file

-c CRC (cyclic redundancy check (also -k)

-q quiet mode, see also -v

-s serial port A or B

-t text mode, don’t receive binaries

-u pathname treated as upper case

-v verbose mode, to rblog

Quibbles

Under 1616/OS V2 and early V3, would bomb on seek to a zero length file
(its own log file).

Associated files

rb.exec, rb.c

See also

sb

Distribution

Applix 1616 Shareware Disk #3 /utilities/ymodem

Author

Chuck Forsberg, from UNIX yam2 and sb

Conversion to Applix 1616 by Colin McCormack

Quick Reference Applix 1616 Shareware Utilities # 1

readmrd - reports on MRDs - Michael Johnson - SW#3, SW#5

readmrd

Description

Locates and reports on all MRDs present in memory. Gives address, ver-
sion number, and the name of each such MRD.

Quibbles

Clears screen prior to display, which can be annoying.

The hard disk MRD seems to have a bug, and the system will crash if you
use this program when the hard disk MRD is installed.

It would be nice to display the state of an MRD with this software, but alas
Andrew has not allowed for this possibility.

Associated files

readmrd.exec, readmrd.s

Distribution

Applix 1616 Shareware Disk #3 /

Author

Michael Johnson, 11/12 Kokoda St. Wagga Wagga NSW 2650 (069)
255255 (home,) (069) 230388 (work - a free call).
Suggested donation $10.

Quick Reference Applix 1616 Shareware Utilities # 1

Readmrd documentation by Michael Johnson

author:- MICHAEL JOHNSON, WAGGA WAGGA
program name:- READMRD.XREL
program source code:- READMRD.S
date:- 16-8-88
version :- 1.0
document issue :- 1

INTRODUCTION

This program is used to find which mrd’s are currently loaded onto the system.
It will also tell you the execute entry address and the version number. The
mrd’s are listed in order i.e. the first one listed is mrd 0, the next is mrd 1, etc..
This program is of use when you wish to some software which uses an mrd and
you don’t know if the mrd is loaded.

USAGE

The command READMRD will execute this program. There are no parameters
required by this program. The result printout is as follows :-
/JOHNSON>readmrd

execute version name

00054BF40 1.2 TDOS
00054D120 1.2 ASSIGN
000559880 1.1 LOCATE
00055C7A0 2.1 EXCEPTION

I am not sure of exactly how useful this program is even though I do find it
handy occasionally. If you find it particularly useful or would like to see some
other software of this nature PLEASE tell me.

I bet you never knew you could log onto a device (/f0) by it’s volume name.
Try it. You may not be sure which drive but you will know the volume.

Quick Reference Applix 1616 Shareware Utilities # 1

sb - send yam or ymodem files - Colin McCormack - SW#6

sb [-7dfkquv] [-sA] [-sB] filename ...

Description

Sends one or more binary files over serial port to a computer running
YAM or ymodem, from the file or files in filename . Supports CRC or
checksum. Maintains a logfile in sblog .

-7 mask is octal 0177

-d dot to slash conversion of names

-f full names transmitted

-k 1k record lengths used

-q quiet mode, see also -v

-s serial port A or B

-u unlink after operation

-v verbose mode, to rblog

Quibbles

Associated rb bombs on seeks to zero length files (its own log file) under
1616/OS V2 and early V3.

Associated files

sb.exec, sb.c

See also

rb

Distribution

Applix 1616 Shareware Disk #3 /utilities/ymodem

Author

Chuck Forsberg, from UNIX yam2 and sb

Conversion to Applix 1616 by Colin McCormack

Quick Reference Applix 1616 Shareware Utilities # 1

sc - spreadsheet calculator - Andrew Morton - SW#15

sc [-c] [-m] [-n] [-r] [-x] [file]

Description

The spreadsheet calculator sc is based on rectangular tables much like a
financial spreadsheet. When invoked it presents you with a table organized
as rows and columns of cells. If invoked without a file argument, the
table is initially empty. Otherwise file is read in (see the Get command
below). Each cell may have associated with it a numeric value, a label
string, and/or an expression (formula) which evaluates to a numeric value
or label string, often based on other cell values.

Options are:

-c Start the program with the recalculation being done in column order.

-m Start the program with automatic recalculation disabled. The
spreadsheet will be recalculated only when the ‘‘@’’ command is
used.

-n Start the program in quick numeric entry mode (see below).

-r Start the program with the recalculation being done in row order (de-
fault option).

-x Cause the Get and Put commands (see below) to encrypt and decrypt
data files.

All of these options can be changed with the ^T and S commands (see
below) while sc is running. Options specified when sc is invoked override
options saved in the data file.

General Information

The screen is divided into four regions. The top line is for entering com-
mands and displaying cell values. The second line is for messages from sc .
The third line and the first four columns show the column and row
numbers, from which are derived cell addresses, e.g. A0 for the cell in
column A, row 0. Note that column names are case-insensitive: you can
enter A0 or a0.

The rest of the screen forms a window looking at a portion of the table.
The total number of display rows and columns available, hence the number
of table rows and columns displayed, is set by curses(3) and may be
overridden by setting the lines and columns environment variables, respect-
ively.

Quick Reference Applix 1616 Shareware Utilities # 1

The screen has two cursors: a cell cursor, indicated by a highlighted cell
and a < on the screen, and a character cursor, indicated by the terminal’s
hardware cursor. The cell and character cursors are often the same. They
differ when you type a command on the top line.

If a cell’s numeric value is wider than the column width (see the f com-
mand), the cell is filled with asterisks. If a cell’s label string is wider than
the column width, it is truncated at the start of the next non-blank cell in
the row, if any.

Cursor control commands and row and column commands can be prefixed
by a numeric argument which indicates how many times the command is to
be executed. You can type ^U before a repeat count if quick numeric entry
mode is enabled or if the number is to be entered while the character cursor
is on the top line.

Commands which use the terminal’s control key, such as ^N, work both
when a command is being typed and when in normal mode.

Changing Options

^To Toggle options. This command allows you to switch the state of one
option selected by o. A small menu lists the choices for o when you
type ̂ T. The options selected are saved when the data and formulas
are saved so that you will have the same setup next time you enter the
spreadsheet.

a Automatic Recalculation. When set, each change in the spreadsheet
causes the entire spreadsheet be recalculated. Normally this is not
noticeable, but for very large spreadsheets, it may be faster to clear
automatic recalculation mode and update the spreadsheet via explicit
@ commands. Default is automatic recalculation on.

c Current cell highlighting. If enabled, the current cell is highlighted
(using the terminal’s standout mode, if available) in addition to being
marked by the cell cursor.

e External function execution. When disabled, external functions (see
@ext() below) are not called. This saves a lot of time at each screen
update. External functions are disabled by default. If disabled, and
external functions are used anywhere, a warning is printed each time
the screen is updated, and the result of @ext() is the value from the
previous call, if any, or a null string.

n Quick numeric entry. If enabled, a typed digit is assumed to be the
start of a numeric value for the current cell, not a repeat count, unless
preceded by ^U.

t Top line display. If enabled, the name and value of the current cell is
displayed on the top line. If there is an associated label string, the first
character of the string value is < for a leftstring or > for a rightstring

Quick Reference Applix 1616 Shareware Utilities # 1

(see below), followed by "string" for a constant string or {expr} for a
string expression. If the cell has a numeric value, it follows as [value],
which may be a constant or expression.

x Encryption. See the -x option.

$ Dollar prescale. If enabled, all numeric constants (not expressions)
which you enter are multipled by 0.01 so you don’t have to keep typ-
ing the decimal point if you enter lots of dollar figures.

S Set options. This command allows you to set various options. A small
menu lists the options that cannot be changed through ^T above.

byrows/bycols
Specify the order cell evaluation when updating. These options also
affect the order in which cells are filled (see /f) and whether a row or
column is cleared by an x command.

iterations= n
Set the maximum number of recalculations before the screen is dis-
played again. Iterations is set to 10 by default.

tblstyle= s
Control the output of the T command. s can be: 0000 (default) to give
colon delimited fields, with no tbl control lines; tbl to give colon
delimited fields, with tbl(1) control lines; latex to give a LaTeX tabular
environment; and tex to give a TeX simple tabbed alignment with
ampersands as delimiters.

Other Set options are normally used only in sc data files since they are
available through ^T. You can also use them interactively.

autocalc/!autocalc Set/clear auto recalculation mode.

numeric/!numeric Set/clear numeric mode.

prescale/!prescale Set/clear numeric prescale mode.

extfun/!extfun Enable/disable external functions.

cellcur/!cellcur Set/clear current cell highlighting mode.

toprow/!toprow Set/clear top row display mode.

Cursor Control Commands

^P Move the cell cursor up to the previous row.

^N Move the cell cursor down to the next row.

^B Move the cell cursor backward one column.

^F Move the cell cursor forward one column.

h, j, k, l
If the character cursor is not on the top line, these are alternate,
vi -compatible cell cursor controls (left, down, up, right).

Quick Reference Applix 1616 Shareware Utilities # 1

^H If the character cursor is not on the top line, ^H is the same as ^B.

SPACE
If the character cursor is not on the top line, the space bar is the same
as ̂ F.

TAB
If the character cursor is on the top line, TAB starts a range (see
below). Otherwise, it is the same as ^F.

Arrow Keys
The terminal’s arrow keys provide another alternate set of cell cursor
controls if they exist and are supported in the appropriate termcap
entry. Some terminals have arrow keys which conflict with other con-
trol key codes.

For example, a terminal might send ^H when the back arrow key is
pressed. In these cases, the conflicting arrow key performs the same
function as the key combination it mimics.

^ Move the cell cursor up to row 0 of the current column.

Move the cell cursor down to the last valid row of the current column.

0 Move the cell cursor backward to column A of the current row. This
command must be prefixed with ^U if quick numeric entry mode is
enabled.

$ Move the cell cursor forward to the last valid column of the current
row.

b Scan the cursor backward (left and up) to the previous valid cell.

w Scan the cursor forward (right and down) to the next valid cell.

^E dGo to end of range. Follow ^E by a direction indicator such as ^P or j.
If the cell cursor starts on a non- blank cell, it goes in the indicated
direction until the last non-blank adjacent cell. If the cell cursor starts
on a blank cell, it goes in the indicated direction until the first non-
blank cell. This command is useful when specifying ranges of adjac-
ent cells (see below), especially when the range is bigger than the
visible window.

g Go to a cell. sc prompts for a cell’s name, a regular expression sur-
rounded by quotes, or a number. If a cell’s name such as ae122 or the
name of a defined range is given, the cell cursor goes directly to that
cell. If a quoted regular expression such as "Tax Table" or "^Jan
[0-9]*$" is given, sc searches for a cell containing a string matching
the regular expression. See regex(3) or ed(1) for more details on
the form of regular expressions. If a number is given, sc will search
for a cell containing that number. Searches for either strings or
numbers proceed forward from the current cell, wrapping back to a0

Quick Reference Applix 1616 Shareware Utilities # 1

at the end of the table, and terminate at the current cell if the string or
number is not found. The last g command is saved, and can be re-
issued by entering g .

Cell Entry and Editing Commands

Cells can contain both a numeric value and a string value. Either value can
be the result of an expression, but not both at once, i.e. each cell can have
only one expression associated with it. Entering a valid numeric expression
alters the cell’s previous numeric value, if any, and replaces the cell’s
previous string expression, if any, leaving only the previously computed
constant label string. Likewise, entering a valid string expression alters the
cell’s the previous label string, if any, and replaces the cell’s previous
numeric expression, if any, leaving only the previously computed constant
numeric value.

= Enter a numeric constant or expression into the current cell. sc
prompts for the expression on the top line. The usual way to enter a
number into a cell is to type =, then enter the number in response to
the prompt on the top line. The quick numeric entry option, enabled
through the -n option or ̂T command, shows the prompt when you
enter the first digit of a number (you can skip typing =).

< Enter a label string into the current cell to be flushed left against the
left edge of the cell.

" > Enter a label string into the current cell to be flushed right against the
right edge of the cell.

Strings you enter must start with ". You can leave off the trailing " and
sc will add it for you. You can also enter a string expression by back-
spacing over the opening " in the prompt.

e Edit the value associated with the current cell. This is identical to =
except that the command line starts out containing the old numeric
value or expression associated with the cell.

E Edit the string associated with the current cell. This is identical to <, ",
or > except that the command line starts out containing the old string
value or expression associated with the cell.

To enter and edit a cell’s number part, use the = and e commands. To
enter and edit a cell’s string part, use the <, ", >, and E commands. See
the sections below on numeric and string expressions for more infor-
mation.

x Clear the current cell. Deletes the numeric value, label string, and/or
numeric or string expression. You can prefix this command with a
count of the number of cells on the current row to clear. The current
column is used if column recalculation order is set. Cells cleared with
this command may be recalled with any of the pull commands (see
below).

Enter

Quick Reference Applix 1616 Shareware Utilities # 1

m Mark a cell to be used as the source for the copy command.

c Copy the last marked cell to the current cell, updating row and col-
umn references in its numeric or string expression, if any.

+ If not in numeric mode, add the current numeric argument (default 1)
to the value of the current cell. In numeric mode, + introduces a new
numeric expression or value, the same as =.

- If not in numeric mode, subtract the current numeric argument (de-
fault 1) from the value of the current cell. In numeric mode, - intro-
duces a new, negative, numeric expression or value, like =.

File Commands

G Get a new database from a file. If encryption is enabled, the file is
decrypted before it is loaded into the spreadsheet.

P Put the current database into a file. If encryption is enabled, the file is
encrypted before it is saved.

W Write a listing of the current database into a file in a form that
matches its appearance on the screen. This differs from the Put com-
mand in that its files are intended to be reloaded with Get, while Write
produces a file for people to look at. Hidden rows or columns are not
shown when the data is printed.

T Write a listing of the current database to a file, but include delimiters
suitable for processing by the tbl, LaTeX, or TeX table processors. The
delimiters are controlled by the tblstyle option. See Set above. The
delimters are are a colon (:) for style 0 or tbl and an ampersand (&)
for style latex or tex.

With the Put, Write, and Table commands, the optional range argument
writes a subset of the spreadsheet to the output file.

With the Write and Table commands, if you try to write to the last file used
with the Get or Put commands, or the file specified on the command line
when sc was invoked, you are asked to confirm that the (potentially) dan-
gerous operation is really what you want.

The three output commands, Put, Write, and Table, can pipe their (un-
encrypted only) output to a program. To use this feature, enter | program to
the prompt asking for a filename. For example, to redirect the output of the
Write command to the printer, you might enter | lpr -p .

M Merge the database from the named file into the current database.
Values and expressions defined in the named file are read into the cur-
rent spreadsheet overwriting the existing entries at matching cell loca-
tions.

Quick Reference Applix 1616 Shareware Utilities # 1

R Run macros. Since sc files are saved as ASCII files, it is possible to
use them as primitive macro definition files. The Run command
makes this easier. It’s like the Merge command, but prints a saved
path name as the start of the filename to merge in. The string to use is
set with the Define command. To write macros, you must be familiar
with the file format written by the Put command. This facility is still
primitive and could be much improved.

D Define a path for the Run command to use.

All file operations take a filename as the first argument to the prompt on
the top line. The prompt supplies a " to aid in typing in the filename. The
filename can also be obtained from a cell’s label string or string express-
ion. In this case, delete the leading " with the backspace key and enter a
cell name such as a22 instead. If the resulting string starts with |, the rest of
the string is interpreted as a UNIX command, as above.

Row and Column Commands

These commands can be used on either rows or columns. The second letter
of the command is either a row designator (one of the characters r, ^ B, ^
F, h, l) or a column designator (one of c, ^ P, ^ N, k, j). A small menu
lists the choices for the second letter when you type the first letter of one of
these commands. Commands which move or copy cells also modify the
row and column references in affected cell expressions. The references
may be frozen by using the fixed operator or using the $ character in the
reference to the cell (see below).

ir, ic Insert a new row (column) by moving the row (column) con-
taining the cell cursor, and all following rows (columns), down
(right) one row (column). The new row (column) is empty.

ar,ac Append a new row (column) immediately following the cur-
rent row (column). It is initialized as a copy of the current one.

dr, dc Delete the current row (column).

pr, pc, pm Pull deleted rows (columns) back into the spreadsheet. The last
deleted set of cells is put back into the spreadsheet at the cur-
rent location. pr inserts enough rows to hold the data. pc inserts
enough columns to hold the data. pm (merge) does not insert
rows or columns; it overwrites the cells beginning at the cur-
rent cell cursor location.

vr, vc Remove expressions from the affected rows (columns), leaving
only the values which were in the cells before the command
was executed.

zr, zc Hide (‘‘zap’’) the current row (column). This keeps a row (col-
umn) from being displayed but keeps it in the data base. The
status of the rows and columns is saved with the data base so

Quick Reference Applix 1616 Shareware Utilities # 1

hidden rows and columns will be still be hidden when you
reload the spreadsheet. Hidden rows or columns are not printed
by the W command.

sr, sc Show hidden rows (columns). Enter a range of rows (columns)
to be revealed. The default is the first range of rows (columns)
currently hidden. This command ignores the repeat count, if
any.

f Set the output format to be used for printing the numeric
values in each cell in the current column. Enter two numbers:
the total width in characters of the column, and the number of
digits to follow decimal points. Values are rounded off to the
least significant digit displayed. The total column width affects
displays of strings as well as numbers. A preceding count can
be used to affect more than one column. This command has
only a column version (no second letter).

Range Commands

Range operations affect a rectangular region on the screen defined by the
upper left and lower right cells in the region. All of the commands in this
class start with a slash; the second letter of the command indicates which
command. A small menu lists the choices for the second letter when you
type /. sc prompts for needed parameters for each command. Phrases sur-
rounded by square brackets in the prompt are informational only and may
be erased with the backspace key.

Prompts requesting variable names may be satisfied with either an explicit
variable name, such as A10, or with a variable name previously defined in
a /d command (see below). Range name prompts require either an explicit
range such as A10: B20, or a range name previously defined with a /d com-
mand. A default range shown in the second line is used if you omit the
range from the command or press the TAB key (see below). The default
range can be changed by moving the cell cursor via the control commands
(^P, ^N, ^B, ^F) or the arrow keys. The cells in the default range are high-
lighted (using the terminal’s standout mode, if available).

/x Clear a range. Cells cleared with this command may be recalled with
any of the pull commands.

/v Values only. This command removes the expressions from a range of
cells, leaving just the values of the expressions.

/c Copy a source range to a destination range. The source and destina-
tion may be different sizes. The result is always one or more full
copies of the source. Copying a row to a row yields a row. Copying a
column to a column yields a column. Copying a range to anything
yields a range. Copying a row to a column or a column to a row yields
a range with as many copies of the source as there are cells in the

Quick Reference Applix 1616 Shareware Utilities # 1

destination. This command can be used to duplicate a cell through an
arbitrary range by making the source a single cell range such as b20:
b20.

/f Fill a range with constant values starting with a given value and
increasing by a given increment. Each row is filled before moving on
to the next row if row order recalculation is set. Column order fills
each column in the range before moving on to the next column. The
start and increment numbers may be positive or negative. To fill all
cells with the same value, give an increment of zero.

/d Use this command to assign a symbolic name to a single cell or a rec-
tangular range of cells on the screen. The parameters are the name,
surrounded by "", and either a single cell name such as A10 or a
range such as a1: b20. Names defined in this fashion are used by the
program in future prompts, may be entered in response to prompts
requesting a cell or range name, and are saved when the spreadsheet is
saved with the Put command. Names defined must be more than two
alpha characters long to differentiate them from a column names, and
must not have embedded special characters. Names may include the
character _ or numerals as long as they occur after the first three alpha
characters.

/s This command lists (shows) the currently defined range names. If
there are no defined range names, then a message is given, otherwise
it pipes output to sort , then to less. If the environment variable
PAGER is set, its value is used in place of less .

/u Use this command to undefine a previously defined range name.

Miscellaneous Commands

Q q ^C
Exit from sc . If you made any changes since the last Get or Put, sc
asks about saving your data before exiting.

^G ESC
Abort entry of the current command.

? Enter an interactive help facility. Lets you look up brief summaries of
the main features of the program. The help facility is structured like
this manual page so it is easy to find more information on a particular
topic.

! Shell escape. sc prompts for a shell command to run. End the com-
mand line with the RETURN key. If the environment variable SHELL
is defined, that shell is run. If not, /bin/sh is used. Giving a null
command line starts the shell in interactive mode. A second ‘‘!’’
repeats the previous command.

^L Redraw the screen.

Quick Reference Applix 1616 Shareware Utilities # 1

^R Redraw the screen with special highlighting of cells to be filled in.
This is useful for finding values you need to provide or update in a
form with which you aren’t familiar or of which you have forgotten
the details.

It’s also useful for checking a form you are creating. All cells which
contain constant numeric values (not the result of a numeric express-
ion) are highlighted temporarily, until the next screen change, how-
ever minor. To avoid ambiguity, the current range (if any) and current
cell are not highlighted.

^X This command is similar to ^R, but highlights cells which have
expressions. It also displays the expressions in the highlighted cells as
left-flushed strings, instead of the numeric values and/or label strings
of those cells. This command makes it easier to check expressions, at
least when they fit in their cells or the following cell(s) are blank so
the expressions can slop over (like label strings). In the latter case, the
slop over is not cleared on the next screen update, so you may want to
type ̂ L after the ̂X in order to clean up the screen.

@ Recalculates the spreadsheet.

^V Type, in the command line, the name of the current cell (the one at the
cell cursor). This is useful when entering expressions which refer to
other cells in the table.

^W Type, in the command line, the expression attached to the current cell.
If there is none, the result is ‘‘?’’.

^A Type, in the command line, the numeric value of the current cell, if
any.

The ̂ V, ̂ W, and ̂A commands only work when the character cursor is
on the command line and beyond the first character.

TAB
When the character cursor is on the top line, defines a range of cells
via the cursor control commands or the arrow keys. The range is high-
lighted, starts at the cell where you typed TAB, and continues through
the current cell cursor. Pressing TAB again causes the highlighted
range to be entered into the command line and the highlighting to be
turned off. This is most useful for defining ranges to functions such as
@sum(). Pressing ‘‘)’’ acts just like typing the TAB key the second
time and adds the closing ‘‘)’’. Note that when you give a range com-
mand, you don’t need to press the first TAB to begin defining a range
starting with the current cell.

Variable Names

Normally, a variable name is just the name of a cell, such as K20. The
value is the numeric or string value of the cell, according to context.

Quick Reference Applix 1616 Shareware Utilities # 1

When a cell’s expression (formula) is copied to another location via copy
or range-copy, variable references are by default offset by the amount the
formula moved. This allows the new formula to work on new data. If cell
references are not to change, you can either use the fixed operator (see
below), or one of the following variations on the cell name.

K20 References cell K20; the reference changes when the formula is
copied.

K20 Always refers to cell K20; the reference stays fixed when the for-
mula is copied.

$K20 Keeps the column fixed at column K; the row is free to vary.

K$20 Similarly, this fixes the row and allows the column to vary.

These conventions also hold on defined ranges. Range references
vary when formulas containing them are copied. If the range is
defined with fixed variable references, the references do not
change.

fixed To make a variable not change automatically when a cell moves,
put the word fixed in front of the reference, for example: B1 *
fixed C3.

Numeric Expressions

Numeric expressions used with the = and e commands have a fairly con-
ventional syntax. Terms may be constants, variable names, parenthesized
expressions, and negated terms. Ranges may be operated upon with range
functions such as sum (@sum()) and average (@avg()). Terms may be com-
bined using binary operators.

-e Negation.

e+e Addition.

e-e Subtraction.

e*e Multiplication.

e/e Division.

e1%e2 e1 mod e2.

e^e Exponentiation.

e<e e<=e e=e e!=e e>=e e>e
Relationals: true (1) if and only if the indicated relation holds,
else false (0). Note that ‘‘<=’’, ‘‘!=’’, and ‘‘>=’’ are converted to
their ‘‘~()’’ equivalents.

~e Boolean operator NOT.

e&e Boolean operator AND.

e|e Boolean operator OR.

Quick Reference Applix 1616 Shareware Utilities # 1

e?e:e Conditional: If the first expression is true then the value of the
second is returned, otherwise the value of the third.

Operator precedence from highest to lowest is:

-, ~ ^ *, / +, - <, <=, =, !=, >=, > & | ?:

Built-in Range Functions

These functions return numeric values.

@sum(r) Sum all valid (nonblank) entries in the region whose two
corners are defined by the two variable names (e.g. c5:e14) or
the range name specified.

@prod(r) Multiply together all valid (nonblank) entries in the specified
region.

@avg(r) Average all valid (nonblank) entries in the specified region.

@max(r) Return the maximum value in the specified region. See also
the multi argument version of @max below.

@min(r) Return the minimum value in the specified region. See also
the multi argument version of @min below.

@stddev(r) Return the sample standard deviation of the cells in the speci-
fied region.

@lookup(e,r) @lookup(se,r) Evaluates the expression then
searches through the range r for a matching value. The range
should be either a single row or a single column. The express-
ion can be either a string expression or a numeric expression.
If it is a numeric expression, the range is searched for the the
last value less than or equal to e. If the expression is a string
expression, the string portions of the cells in the range are
searched for an exact string match. The value returned is the
numeric value from the next row and the same column as the
match, if the range was a single row, or the value from the
next column and the same row as the match if the range was a
single column.

@index(e,r) Use the value of the expression e to index into the range
r. The numeric value at that position is returned. The value 1
selects the first item in the range, 2 selects the second item,
etc. R should be either a single row or a single column.

@stindex(e,r) Use the value of e to index into the range r. The string
value at that position is returned. The value 1 selects the first
item in the range, 2 selects the second item, etc. The range
should be either a single row or a single column.

Quick Reference Applix 1616 Shareware Utilities # 1

Built-in Numeric Functions

All of these functions operate on floating point numbers (doubles) and
return numeric values. Most of them are standard system functions more
fully described in math(3) . The trig functions operate with angles in
radians.

@sqrt(e) Return the square root of e.

@exp(e) Return the exponential function of e.

@ln(e) Return the natural logarithm of e.

@log(e) Return the base 10 logarithm of e.

@floor(e) Return the largest integer not greater than e.

@ceil(e) Return the smallest integer not less than e.

@rnd(e) Round e to the nearest integer.

@fabs(e) Return the absolute value of e.

@pow(e1,e2) Return e1 raised to the power of e2.

@hypot(e1,e2) Return sqrt(e1*e1+e2*e2), taking precautions against
unwarranted overflows.

pi A constant quite close to pi.

@dtr(e) Convert e in degrees to radians.

@rtd(e) Convert e in radians to degrees.

@sin(e) @cos(e) @tan(e)
Return trigonometric functions of radian arguments. The
magnitude of the arguments are not checked to assure
meaningful results.

@asin(e) Return the arc sine of e in the range -pi/2 to pi/2.

@acos(e) Return the arc cosine of e in the range 0 to pi.

@atan(e) Return the arc tangent of e in the range -pi/2 to pi/2.

@atan2(e1,e2) Returns the arc tangent of e1/e2 in the range -pi to pi.

@max(e1,e2,...)
Return the maximum of the values of the expressions. Two
or more expressions may be specified. See also the range
version of @max above.

@min(e1,e2,...)
Return the minimum of the values of the expressions. Two
or more expressions may be specified. See also the range
version of @min above.

@ston(se) Convert string expression se to a numeric value.

Quick Reference Applix 1616 Shareware Utilities # 1

@eqs(se1,se2) Return 1 if string expression se1 has the same value as
string expression se2, 0 otherwise.

@nval(se,e) Return the numeric value of a cell selected by name. String
expression se must evaluate to a column name (‘‘A’’-
‘‘AE’’) and e must evaluate to a row number (0-199). If se
or e is out of bounds, or the cell has no numeric value, the
result is 0. You can use this for simple table lookups. Be
sure the table doesn’t move unexpectedly! See also @sval()
below.

String Expressions

String expressions are made up of constant strings (characters surrounded
by double quotation marks), variables (cell names, which refer to the
cells’s label strings or expressions), and string functions. Note that string
expressions are only allowed when entering a cell’s label string, not its
numeric part. Also note that string expression results may be left or right
flushed, according to the type of the cell’s string label.

Concatenate strings. For example, the string expression A0 # "zy dog"
displays the string ‘‘the lazy dog’’ in the cell if the value of A0’s
string is ‘‘the la’’.

Built-in String Functions

@substrr(se,e1,e2)
Extract and return from string expression se the substring
indexed by character number e1 through character number e2
(defaults to the size of se if beyond the end of it). If e1 is less
than 1 or greater than e2, the result is the null string. For
example, @substr ("Nice jacket", 4, 7) returns the
string ‘‘e jac’’.

@fmt(se,e) Convert a number to a string. The argument se must be a
valid printf(3) format string. e is converted according to the
standard rules. For example, the expression @fmt
("**%6.3f**", 10.5) yields the string ‘‘**10.500**’’. e is
a double, so applicable formats are e, E, f, g, and G. Try
‘‘%g’’ as a starting point.

@sval(se,e) Return the string value of a cell selected by name. String
expression se must evaluate to a column name (‘‘A’’-‘‘AE’’)
and e must evaluate to a row number (0- 199). If se or e is out
of bounds, or the cell has no string value, the result is the null
string. You can use this for simple table lookups. Be sure the
table doesn’t move unexpectedly!

Quick Reference Applix 1616 Shareware Utilities # 1

@ext(se,e) Call an external function (program or script). The purpose is
to allow arbitrary functions on values, e.g. table lookups and
interpolations. String expression se is a command or com-
mand line to call with popen(3). The value of e is converted to
a string and appended to the command line as an argument.
The result of @ext() is a string: the first line printed to stan-
dard output by the command. The command should emit
exactly one output line. Additional output, or output to
standard error, messes up the screen. @ext() returns a null
string and prints an appropriate warning if external functions
are disabled, se is null, or the attempt to run the command
fails.

External functions can be slow to run, and if enabled are called at each
screen update, so they are disabled by default. You can enable them with
^T when you really want them called.

A simple example:

@ext ("echo", a1)

You can use @ston() to convert the @ext() result back to a number. For
example:

@ston (@ext ("form.sc.ext", a9 + b9))

Note that you can built a command line (including more argument values)
from a string expression with concatenation. You can also "hide" the sec-
ond argument by ending the command line (first argument) with ‘‘ #’’
(shell comment).

Built-in Financial Functions

Financial functions compute the mortgage (or loan) payment, future value,
and the present value functions. Each accepts three arguments, an amount,
a rate of interest (per period), and the number of periods. These functions
are the same as those commonly found in other spreadsheets and financial
calculators

@pmt(e1,e2,e3)
@pmt(60000,.01,360) computes the monthly payments for a
$60000 mortgage at 12% annual interest (.01 per month) for
30 years (360 months).

@fv(e1,e2,e3)
@fv(100,.005,36) computes the future value for of 36
monthly payments of $100 at 6% interest (.005 per month). It
answers the question: "How much will I have in 2 years if I
deposit $100 per month in a savings account paying 6%
interest compounded monthly?"

Quick Reference Applix 1616 Shareware Utilities # 1

@pv(e1,e2,e3)
@pv(1000,.015,36) computes the present value of an ordinary
annuity of 36 monthly payments of $1000 at 18% annual
interest. It answers the question: "How much can I borrow at
18% for 3 years if I pay $1000 per month?"

Built-in Date and Time Functions

Time for sc follows the system standard: the number of seconds since
1970. All date and time functions except @date() return numbers, not
strings.

@now Return the current time encoded as the number of seconds
since December 31, 1969, midnight, GMT.

The following functions take the time in seconds (e.g. from @now) as an
argument and return the specified value. The functions all convert from
GMT to local time.

@date(e) Convert the time in seconds to a date string 24 characters long
in the following form: Sun Sep 16 01:03:52 1973
Note that you can extract parts of this fixed-format string with
@substr().

@year(e) Return the year. Valid years begin with 1970. The last legal
year is system dependent.

@month(e) Return the month, encoded as 1 (January) to 12 (December).

@day(e) Return the day of the month, encoded as 1 to 31.

@hour(e) Return the number of hours since midnight, encoded as 0 to
23.

@minute(e) Return the number of minutes since the last full hour, encoded
as 0 to 59.

@second(e) Return the number of seconds since the last full minute,
encoded as 0 to 59.

Spreadsheet Update

Re-evaluation of spreadsheet expressions is done by row or by column
depending on the selected calculation order. Evaluation is repeated up to
iterations times for each update if necessary, so forward references usually
work as expected. See set above. If stability is not reached after ten iter-
ations, a warning is printed. This is usually due to a long series of forward
references, or to unstable cyclic references (for example, set A0’s
expression to ‘‘A0+1’’).

Quick Reference Applix 1616 Shareware Utilities # 1

Bugs

Top-to-bottom, left-to-right evaluation of expressions is silly. A proper fol-
lowing of the dependency graph with (perhaps) recourse to relaxation
should be implemented.

Supports at most 200 rows and 40 columns.

Editing is crude. All you can do is backspace over and retype text to be
altered. There is no easy way to switch a leftstring to a rightstring or vice
versa. Of course, you can always write the spreadsheet to a file with Put,
edit it by calling an editor on the file with ‘‘!’’, and read it back with Get -
if you are comfortable editing spreadsheet files.

Only one previous value is saved from any call of @ext(). If it is used more
than once in a spreadsheet and external functions are enabled and later dis-
abled, the last returned value pops up in several places.

On some systems, if the cell cursor is in column 0 with topline enabled (so
the current cell is highlighted), or if any cell in column 0 is highlighted, the
corresponding row number gets displayed and then blanked during a screen
refresh. This looks like a bug in curses.

Many commands give no indication (a message or beep) if they have null
effect. Some should give confirmation of their action, but they don’t.

Associated files

a1616.t1, environ, sc.doc, sc.exec, sc.man, tutorial.sc
(source isn’t included because it is too large to compile on a standard
Applix 1616 - if you want a copy, ask).

Distribution

Applix 1616 Shareware Disk # 15 /sc

Author

Release 3.0, Ported to Applix 1616 by Andrew Morton.

Quick Reference Applix 1616 Shareware Utilities # 1

scan - list keyboard scan codes - Andrew Morton - SW#9

scan

Description

A little demo program that intercepts the keyboard scan code vector, and
places the scancode in a private buffer. Read by calls to getscancode.
Better than kv.

The 1616 keyboard is interrupt driver: every time a key is pressed (or
released), a hardware interrupt is generated. The code produced by the
keyboard is passed by an EPROM routine to a routine at the address given
by set_kvec(). The default routine in EPROM converts the scan codes to
ASCII, and places the ASCII character in the keyboard buffer ready for
other use.

You can replace the EPROM interrupt service routine (ISR) with your own
code, using set_kvec() to point to your code. This is done in scan.c . Note
that you can still cal the existing EPROM routine after your own routine,
as done in scan.c

Use to exit.

Associated files

scan.xrel, scan.c, scancode.doc, makefile

Distribution

Applix 1616 Shareware Disk # 9 /scancodes

Author

Andrew Morton

Esc

Quick Reference Applix 1616 Shareware Utilities # 1

sdate - set time and date, using pop up window - Andrew McNa-
mara - SW#6

sdate [-h]

Description

Very cute little time and date set utility, that appears in a pop up window.
After operation, it restores the display to its previous contents. Default
operation is a 24 hour clock. Seems to work fine.

-h 12 hour clock option.

Use space bar or tab to move, backspace to reverse.

Quibbles

Time is not updated on pop up display during its operation. I can’t see this
as being a problem, but thought I needed some complaint other than
merely about Andrew’s vivid green colour scheme! Andrew tells me he
only has a monochrome monitor, and has never seen it in colour.

Associated files

sdate.xrel , sdate.c

See also

dateset

Distribution

Applix 1616 Shareware Disk #6 /utility

Author

Andrew McNamara

Quick Reference Applix 1616 Shareware Utilities # 1

sdate - set time and date - Matthew Gardener - SW#15

sdate

Description

Time and date set utility. Requests time and date in a human (not USA)
fashion. Converts to system format, sets system date and time. Tests
briefly for numerics.

Quibbles

There are too many of these routines!

Associated files

sdate.xrel , sdate.s

See also

dateset, sdate

Distribution

Applix 1616 Shareware Disk #15

Author

Matthew Gardener

Quick Reference Applix 1616 Shareware Utilities # 1

sega - EGA style video drivers - Conal Walsh - SW#6

sega.mrd

Description

Early version of EGA 640 by 350 video drivers, and Microbee compatible
video drivers. See tutorials in µPeripheral #10 and on.

Examples

Quibbles

Associated files

/ega, /mbv, asmv.shell, info.video, syscalls.newlib,
video.global

See also

Distribution

Applix Shareware Disk #6 /video /video/ega, /video/mbv

Author

Conal Walsh

Quick Reference Applix 1616 Shareware Utilities # 1

setvol - change name of disk volume - Michael Johnson - SW#15

setvol name [device]

Description

Allows you to easily change the volume name on a disk. Excellent docu-
mentation in Michael’s usual style.

Associated files

setvol.xrel , setvol.c , setvol.h , setvol.doc

Distribution

Applix 1616 Shareware Disk # 15 /johnson

Author

Michael Johnson, 11/12 Kokoda Street, Wagga Wagga. 15 Aug 1989.

Quick Reference Applix 1616 Shareware Utilities # 1

terminal - replacement for inbuilt terminal ??? - SW#14

terminal port [ver] [half] [inLF] [outLF] [print] [echo] [[-]logfile]

Description

This terminal program is designed as an update to replace the 1616/OS
inbuilt terminal emulation. The optional arguments can be used in any
order. The meaning of the arguments are as follows:

port Serial port sa: or sb:

ver Verbose mode on.

half Half duplex operation on.

inLF add line feeds to incoming carriage returns.

outLF add line feeds to outgoing carriage returns.

print echo all data to Centronics port.

echo echo all received data back through the output port.

logfile file to which all output is directed.

- appends to logfile whose name is given.

Associated files

terminal.doc

Distribution

Applix 1616 Shareware Disk # 14

Author

?

Quick Reference Applix 1616 Shareware Utilities # 1

testmrd - test MRD prior to installing, by Michael Johnson -
SW#5

author:- MICHAEL JOHNSON, WAGGA WAGGA
program name:- TESTMRD.XREL
program source code:- TESTMRD.S
date:- 13-9-88
version :- 1.0
document issue :- 1

INTRODUCTION

This program is designed to test an MRD before it is installed into the
MRDRIVERS file on you disc. The program as supplied does perform it’s
functions correctly. However, it may cause some disturbances to your system
when you run it. This is due to some unknown causes which I hope to find
eventually. The program will always send a level 0 restart command to the
MRD and report the returned value. You will need to inform the TESTMRD
function of any other tests you wish to perform. If the MRD is enabled and you
ask for an execentry command to be sent the program will also permitt you to
test the 1616o/s command level of the MRD IF it exists.

USING THE TESTMRD FUNCTION

The command is typed in at 1616o/s level. The mrd MUST be in .XREL format
AND must have an .XREL extension. If the enable, disable, doit or stopit com-
mands need an argument then the program will permit you to send the argument
to the mrd with these commands. Each command requires it’s own argument.

The command line structure :-
testmrd mrd_name.xrel [-e (argument)] [-d (argument)] [-x
(argument)] [-s (argument)] [-t (number)]

Where :-

The parts in square brackets ’[]’ are optional,
The parts in standard brackets ’()’ are mandatory if the option is selected
DO NOT include the brackets.

Each indicator and argument must be separated by at least 1 space.

indicator -e will supply an argument for enable mrd call
indicator -d will supply an argument for disable mrd call
indicator -x will supply an argument for doit mrd call
indicator -s will supply an argument for stopit mrd call

indicator -t is used to state which tests are to be performed.

Quick Reference Applix 1616 Shareware Utilities # 1

1 will test level 1 restart
2 will test level 2 restart
3 will test get name command
4 will test get version command
5 will test enable command
6 will test disable command
7 will test doit command
8 will test stopit command
9 will test execentry command
.255 will test all of the above commands

If you supply any other value to the test indicator it will print the following
error message :-

number too large

If the program has trouble working out your arguments then it will print a usage
message similiar to this one

USAGE:- testmrd mrd_name.xrel [-e (argument)] [-d (argument)] [-x (argu-
ment)] [-s (argument)] [-t (number)]

-e will supply an argument for enable mrd call
-d will supply an argument for disable mrd call
-x will supply an argument for doit mrd call
-s will supply an argument for stopit mrd call

-t(number) where 0 < (number) < 10 OR (number) = .255 (FF)this number is the
mrd command number .255 (FF) will execute all mrd commands

error at argument :- 9

If you find this documentation is too short or not informative enough then feel
free to write to me and state what you think should be added, changed or
improved.

KIND REGARDS

MICHAEL JOHNSON

(069) 255255

Quick Reference Applix 1616 Shareware Utilities # 1

testst14 - password protection - Ole Nielson - SW#16

teststr14 password

Description

A little password security program. Cleans the screen and doesn’t let you
use it until you enter the correct password.

When invoked, the message
Machine is in use
Do not touch
appears on screen, and rearranges itself continually, which is a cute touch.

Associated files

teststr14.c

Distribution

Applix 1616 Shareware Disk # 16

Author

Ole Nielson, 5 Aug 1989.

Quick Reference Applix 1616 Shareware Utilities # 1

toupper - filter lower case to upper - Matthew Gardener - SW#15

toupper

Description

A filter to convert lower case to upper case. Invoke it via the pipe (|) rou-
tine.

Associated files

toupper.s

Distribution

Applix 1616 Shareware Disk # 15 /gardener

Author

Matthew Gardener, PO Box 8021, Palmerston North, NZ.

Quick Reference Applix 1616 Shareware Utilities # 1

trace - single steps a program - Mike Gregory - SW#3

trace address

Description

Traces the execution of a program, by forcing it to single step.

x exits from trace

single step on any other key

Examples

I haven’t tested it - has anyone?

Quibbles

Associated files

trace.s

See also

except

Distribution

Applix 1616 Shareware Disk #3 /utilities

Author

Mike Gregory (in ETI July 1988)

Quick Reference Applix 1616 Shareware Utilities # 1

tree - lists all directories and files - Matthew Geier - SW#3

tree [-q] [/vol]
tree [-q] [device name]

Description

Tree lists all the directories and files on a block device, such as a disk. If
there is no argument, it uses the currently active device. It is intended to
be able to find a file, including its full path, by piping through grep or a
similar search utility.

-q Quiet mode, lists file names only.

The listing is done one file per line. Directory and backup bits are
reported.

Quibbles

Has trouble returning with really deep directory trees (sometimes fails to
print the whole path).
Quiet mode sometimes forgets that it is supposed to be quiet.

Associated files

tree.xrel, tree.c, filesys.h

See also

whereis (Andrew wrote one recently)

Distribution

Applix 1616 Shareware Disk #3 /utilities/tree (early version, may not
include -q option).

Author

Matthew Geier

Quick Reference Applix 1616 Shareware Utilities # 1

ymodem - ymodem file transfer - Colin McCormack - SW#8

ymodem sa: [sb:]

Description

Yet another modem program, this one providing ymodem protocols (don’t
ask me the difference).

Possible options:

c crc error checking (otherwise uses checksum).

s serial port sa: or sb:

v verbose mode invoked.

Examples

Quibbles

No .exec files with this, couldn’t even be sure who wrote it.

Associated files

crcy.c, log.c, main.c, modem.c, rxy.c, ry.c, txy.c, ymo-
dem.h

See also

modem, rb, sb, sealink(?)

Distribution

Applix 1616 Shareware disk #8 /ymodem

Author

Colin McCormack

Quick Reference Applix 1616 Shareware Utilities # 1

Z80asc - Z80 memory map dump - Sid Young - SW#6

Z80asc

Description

Dumps the contents of the Z80 memory, in ASCII.

Quibbles

Associated files

z80hex.exec , z80asc.s

See also

z80hex

Distribution

Applix 1616 Shareware Disk #6 /utility/sid

Author

Sid Young

Quick Reference Applix 1616 Shareware Utilities # 1

Z80hex - Z80 memory map dump - Sid Young - SW#6

Z80hex

Description

Dumps the contents of the Z80 memory, in hexadecimal.

Quibbles

Bombs on my system (but strangely z80asc works?)

Associated files

z80hex.exec , z80hex.s

See also

z80asc

Distribution

Applix 1616 Shareware Disk #6 /utility/sid

Author

Sid Young

Quick Reference Applix 1616 Shareware Utilities # 1

zrdos - transfer files between zrdos and 1616 - Joe Moschini -
SW#11

atoz filename
ztoa
zd

Description

Set of programs to allow you to transfer files between the 1616 file system,
and a Zrdos CP/M file system.

First transfer zrdos.ram to /rd . Absolutely essential.

zd displays Zrdos directory, with its bit map.

atoz filename transfers 1616 files to Zrdos files. It accepts wildcards.

ztoa transfers Zrdos files to 1616. Press the bar for the next file.
Press to actually transfer the displayed file. Press to exit pro-
gram.

Associated files

atoz.c, ztoa.c, zd.c, atoc.xrel, ztoa.xrel, zrdos.ram

Distribution

Applix 1616 Shareware Disk # 11 /zrdos

Author

Joe Moschini, 33 Wade Street, Embleton, Perth, W.A. 6062, who got tired
of moving them the hard way.

Space

Enter Esc

Quick Reference Applix 1616 Shareware Utilities # 1

Summary
arc [-]{ amufdxeplvtc } [biswn] [gpassword] archive [filename ...]

asciicalc

basic

bigbuf [bufsize] [satx] [sarx] [sbtx] [sbrx] [cent] [kb]

bmedit bmfile

c1616 helpfile [swapfile]

calendar.bas

cdev [device:]

dateset.bas

dateset

demonstration

dhryreg
dhrynoreg

dial phone

disassemble file.xrel [char]
disassemble m address1 address2 [char]

diskio

du2

easy_write

ep232

except

except.mrd

factorial [-v] number

ftree [-s filename] [-d] [-f] [/dev]

getty [sb:] [-u id] [-malrwx] [-c barfile]

hs name or number

indent [input-file [output-file]] [-bad | -nbad] [-bap
| -nbap] [-bbb | -nbbb] [-bc | -nbc] [-bl] [-br] [
-cn] [-cdn] [-cdb | -ncdb] [-ce | -nce] [-cin] [
-clin] [-dn] [-din] [-fc1 | -nfc1] [-in] [-ip | -nip
] [-ln] [-lcn] [-lp | -nlp] [-pcs | -npcs] [-npro] [
-psl | -npsl] [-sc | -nsc] [-sob | -nsob] [-st] [
-troff] [-v | -nv]

Quick Reference Applix 1616 Shareware Utilities # 1

kmem

kv

lfk fkey_def_file

lisp

locate.mrd

makeega

mem

modem sa: [sb:]

modem32

more [files ...]

nswp

pfile.bas

prog?

ps3

quick.mrd

quindex

rb [-7buv] [-sA] [-sB]
rb [-1bcuv] filename

readmrd

sb [-7dfkquv] [-sA] [-sB] filename ...

sc [-c] [-m] [-n] [-r] [-x] [file]

scan

sdate [-h]

sdate

sega.mrd

setvol name [device]

terminal port [ver] [half] [inLF] [outLF] [print] [echo] [[-]logfile]

testmrd

teststr14 password

toupper

trace address

tree [-q] [/vol]
tree [-q] [device name]

Quick Reference Applix 1616 Shareware Utilities # 1

ymodem sa: [sb:]

Z80asc

Z80hex

atoz filename
ztoa
zd

Quick Reference Applix 1616 Shareware Utilities # 1

Index

bigbuf buffer size, 5
buffer size bigbuf, 5

Quick Reference Applix 1616 Shareware Utilities # 1

Table of Contents

A Note to Authors ... 1

arc - compress and archive files - Andrew Morton ... 2

asciicalc - ascii string evaluation tutorial - Sid Young - SW#6 3

basic - Tiny basic - Andrew Morton - SW#14 ... 4

bigbuf - set buffer size for character devices - Andrew Morton - SW#14 5

bmedit - bit map editor - Andrew McNamara - SW#15 ... 6

c1616 - help system - Conal Walsh - SW#13 .. 7

calendar - prints whole year calendar - Paul Cahill - SW#4 9

cdev - dump character device tables - Andrew McNamara - SW#15 10

dateset - set system clock - David Fowler - SW#4 ... 11

dateset - at power up, by Michael Johnson - SW#5 .. 12

debug - breakpoint debugger - Gerhard Baumann - SW#14 13

demonstration - of exception handler by Michael Johnson - SW#5 14

dhrystone - c compiler benchmark - Andrew Morton - SW#9 15

dial - simple phone autodialler - Matthew Geier - SW#15 16

disassemble - disassemble memory or file - Gerhard Baumann - SW#14 17

diskio - disk input output calls tutorial - Sid Young - SW#6 18

du2 - select and view disk blocks - Sid Young - SW#6 .. 19

Easy_write - group and modify programs - Michael Johnson - SW#15 20

ep232 - eprom burner software - Joseph Moschini - SW#3 24

except - exception handler for bug tracing - Michael Johnson - SW#3, SW#5 25

Except MRD, by Michael Johnson - SW#3, SW#5 .. 26

factorial - evaluates factorials - Gerhard Baumann - SW#15 41

ftree - find files and display directory trees - Michael Johnson - SW#15 42

getty - restricted shell via serial port - Andrew McNamara - SW#15 45

hs - Help for system calls - Conal Walsh - SW#13 .. 46

indent - C programs formatter- Andrew Morton - SW#10 47

Quick Reference Applix 1616 Shareware Utilities # 1

kmem - C storage allocator - Andrew Morton - SW#6 ... 52

kv - prints keyboard scan codes - Andrew Morton - SW#6 53

lfk - define function keys - Cameron Hutchison - SW#15 54

lisp - ai language - Andrew Morton - SW#8 .. 55

locate - MRD to find data in memory, by Michael Johnson - SW#5 56

makeega - run Hercules monitor as EGA - Lindsay Washusen - SW#15 64

mem - memory free report - Andrew McNamara - SW#15 65

modem - Xmodem file transfer - Mark Harvey - SW#1, SW#2 66

modem32 - menu driven file transfer program - Sid Young - SW#6 67

more - formats text files for viewing - Matthew Gardner - SW#15 68

nswp32 - bulk file copy, delete, view utility - Sid Young - SW#6 70

pfile - menu driven flat file data base - Paul Cahill - SW#4 72

prog? - Assembler tutorial examples - Kathy Morton - SW#1 73

ps3 - process status nice value - Matthew Geier or Andrew McNamara -
SW#15 .. 74

quick - mrd to speed up processing - Andrew Morton - SW#9 75

quindex - quick index - Michael Johnson - SW#5 ... 76

rb - receive yam or ymodem files - Colin McCormack - SW#3 78

readmrd - reports on MRDs - Michael Johnson - SW#3, SW#5 79

sb - send yam or ymodem files - Colin McCormack - SW#6 81

sc - spreadsheet calculator - Andrew Morton - SW#15 .. 82

scan - list keyboard scan codes - Andrew Morton - SW#9 99

sdate - set time and date, using pop up window - Andrew McNamara - SW#6 ... 100

sdate - set time and date - Matthew Gardener - SW#15 ... 101

sega - EGA style video drivers - Conal Walsh - SW#6 ... 102

setvol - change name of disk volume - Michael Johnson - SW#15 103

terminal - replacement for inbuilt terminal ??? - SW#14 104

testmrd - test MRD prior to installing, by Michael Johnson - SW#5 105

testst14 - password protection - Ole Nielson - SW#16 .. 107

Quick Reference Applix 1616 Shareware Utilities # 1

toupper - filter lower case to upper - Matthew Gardener - SW#15 108

trace - single steps a program - Mike Gregory - SW#3 .. 109

tree - lists all directories and files - Matthew Geier - SW#3 110

ymodem - ymodem file transfer - Colin McCormack - SW#8 111

Z80asc - Z80 memory map dump - Sid Young - SW#6 .. 112

Z80hex - Z80 memory map dump - Sid Young - SW#6 .. 113

zrdos - transfer files between zrdos and 1616 - Joe Moschini - SW#11 114

Summary ... 115

Quick Reference Applix 1616 Shareware Utilities # 1

