
1616: Technical
Reference Man-

ual

Version 4.066
August, 1993

Applix 1616 microcomputer project
Applix pty ltd

1616 Technical Reference Manual

Even though Applix has tested the software and reviewed the documentation,
Applixmakesno warrantyor representation, either expressor implied, with respect
to software, its quality, performance, merchantability, or fitness for a particular
purpose. As a result thissoftware is sold "as is,"andyou thepurchaser areassuming
the entire risk as to its quality and performance.

In no event will Applix be liable for direct, indirect, special, incidental, or
consequential damages resulting from any defect in the software or its docu-
mentation.

The original version of this manual was written by Andrew Morton, who also
wrote the entire operating system.
Additional introductory and tutorial material by Eric Lindsay
Editorial and design consultant: Jean Hollis Weber

Comments about this manual or the software it describes should be sent to:

Applix Pty Limited
Lot 1, Kent Street,
Yerrinbool, 2575
N.S.W. Australia
(048) 839 372

Private BBS systems (ringback) on (02) 554 3114 and (02) 540 3595

 Copyright 1986 Applix Pty Limited. All Rights Reserved.
Revised material Copyright 1990 Eric Lindsay

ISBN 0 947341 02 1

MC68000 is a trademark of Motorola Inc.

1
Relocatable Code Format

If a computer system is to retain multiple programs in memory simultaneously, it
is necessary for the operating system to be able to load programs in at varying
addresses. If a computer includes memory management hardware, most of this
can be done by the hardware. Like most low cost computers, the Applix does not
have the necessary hardware. In the absence of memory management hardware,
the most obvious method is to write relocatable code, such as is done in the
Macintosh. However this can be restrictive to programmers.

The Applix uses instead a relocating loader. Because one does not know what
combination of programs is going to be in memory at any one time, you can not
give each program a different load address. With relocatable program files, the
operating system can load a file in at any address in memory, and then alter all the
self-referenceswithin the program so that it will run correctly at the loaded address.
Utilities are provided to change a program with absolute addresses into the relo-
catable format described later.

First, some terminology from UNIX and the C language: for our purposes a program
consists of three sections:text, data andbss.

text The text section of a program is the actual machine instructions: the
opcodes and their operands. The text section may include some data
such as strings of text, jump tables, etc.

data More formally initialised data, the data section holds such things as
constant strings, tables of numbers, initialised data structures, etc.

bss This stands for the block storage segment. The bss is a program’s
variable storage area. This is where variables and data are written,
stored and read.

In a program file on disk only thetext anddata sections need be stored. Thebss
section contains no useful information before the program has commenced
execution. When 1616/OS loads an.xrel file into memory for execution, it fills
the program’sbssarea with zeroes before the program starts executing.

For example, in the 1616/OS ROMs, thetext anddata sections are in the ROMs,
while thebsssection is in RAM at $400.

A relocatable format file (an.xrel file) contains:

• aheaderwhichcontains informationabout the file,andabout its threesections.

• the text and data itself

• relocation information with which the loader can make the code executable
at whatever address it is loaded.

This relocation format only supports the relocation of long words. Short mode
(16 bit or 8 bit) addressing is not supported.

 Relocatable Code Format Tech Ref 1-1

The header is as follows:

Offset into file Size Name Usage

0 word magic1 Magic pattern ($601a) (actually bra
26)

2 long textlen Length of text section

6 long datalen Length of data section

10 long bsslen Length of bss section

14 long symtablen Length of symbol table

18 long Program stack allocation

22 long textbegin Start address of text

26 word relocflag If non-zero, relocation info is included
in file

The symtablen field indicates the length of the file symbol table at the end of the
file. This may be set to zero if the symbol table does not exist. Thetextbegin field
is the address at which the text segment will run without relocation. This is used
for offsetting self references within the program for loading at the new address.

When the1616/OS relocating loader loads ina relocatable (.xrel) file forexecution
it places thetext, data andbsssections contiguously in memory, in that order.

Immediately after the relocatable file’s header comes the program text, then the
initialised data.

After this comes the symbol table, and then the relocation table. The relocation
information consists of a coded series of pointers into the text and data sections
which tells the loader which longwords need relocation. The coding scheme is as
follows:

The relocation information starts with a long word, which is the offset into the
loaded code of the first relocatable longword. If this offset is zero, then no relo-
cations exist: the file contains no absolute self-references.

After the first longword comes a series of bytes. Each byte is added to the current
pointer to get a pointer to the next longword which must be relocated. This will
result in all the byte offsets being even numbers. The byte $01 has a special
meaning:add254(decimal) to the locationpointerwithoutperforminga relocation.
This is for cases where two neighbouring relocatable longwords are more than 254
bytes apart. The entire sequence is terminated by a byte of $00.

Theloadrelandfloadrel system calls (.69) may be used to load and relocate.xrel

files.

1-2 Tech Ref Relocatable Code Format

Generating .xrel files - genreloc

At present, the 1616 assembler SSASM does not produce.xrel files directly. The
genreloc.xrel utility has been provided for this purpose. This program generates
an .xrel file from two exec files (such as those produced byssasm) whose start
addresses differ by $20002.

Use this program as follows:
genreloc ifile.1 ifile.2 outfile.xrel bsssize

Whereifile.1 is the code executable at $10002 andifile.2 is the code executable
at $30004.outfile.xrel is the output file.bsssize is an optional argument which
specifies how muchbssspace there is to be allocated at the end of the data section
at run time. Note that this takes no disk space.

If the filename extensions are omitted they default to ‘.1 ’, ‘ .2 ’ and ‘.xrel ’.

When usingssasm to generateifile.1 andifile.2 be careful to not assemble either
one at a start address of less than $10000. This is because the assembler optimises
some addressing to absolute short mode, which could result in programs which
start at different addresses differing in more than just their self-referential
addressing.

The shell filemakexrel.shell automates all of this: be sure not to have any .ORG
pseudo-ops in the source code when usingmakexrel.shell , because this shell file
adds its own.

Assembling your program twice is, of course, a nuisance. Unless you are devel-
oping a memory resident driver (MRD) the code can be tested out as an.exec file
(requiring only one assembly) and then converted to an.xrel file when the code
is stable.

The relcc program available to owners of theHiTech C Compilercan be used to
directly generate.xrel programs from C code

Loading executable files into memory

Thefloadrel system call loads programs (.exec or .xrel) into memory. This call
should be used if you wish to load code from a disk file without using theexec
systemcalls. The loaded program can remain resident in memory after the program
which loaded it terminates, provided the loaded code resides in mode 1 allocated
memory.

Loadrelwill load theprogram from a previouslyopened file into a specific memory
location, rather than being allocated memory by the system.

Load a program - floadrel

floadrel(path, memmode)

 Relocatable Code Format Tech Ref 1-3

d0 69

d1 path Pointer to pathname of program

d2 memmode Memory allocation mode

Return Error code or load address.

It is passedpath, a pointer to a null-terminated string which is the pathname of the
file to load. If the pathname does not end with.exec or .xrel an error code is
returned.

If path is a .exec file the following happens:
The start address and length of the file are read
Memory is allocated for the file usinggetfmem
The file is loaded
The start address is returned

If path is a.xrel file the following happens:
The length of the file (text, data, bss) is read
Memory is allocated for the file usinggetmem
The program is loaded in and relocated
The start address is returned

Thememmode argument to this system call is the mode which is passed togetfmem
orgetmemwhen storage is allocated for the program to be loaded. See thegetmem
documentation for details.memmode should be 0 if the loaded program does not
need to remain in memory after the currently running program has ended.

If the loaded program is to remain in memory after the currently running program
has ended, usememmode = 1. Note that this leaves the loaded program safely in
memory until its memory is freed or until the system is reset.

It is the caller’s responsibility to release the memory which is allocated when the
program is loaded in (by usingfreemem).

Relocating loader - loadrel

loadrel(handle, addr)

d0 11

d1 handle Input file handle

d2 addr Target address

Return Error code

Loads relocatable code from the previously opened file (see syscall 105opento
open a file) whose handle ishandle. The file should be open for reading, with the
file pointer positioned at a relocatable file header. The code is read in, then the
relocation information is read, and the relocation is performed. Upon return the
code has been loaded at (addr), and the file pointer is located at the next byte beyond
the end of the relocation information.

1-4 Tech Ref Relocatable Code Format

A negative return indicates an error.

If handle = -1 then the start address of the most recently loaded program (loaded
by anexec) is returned. Seefloadrel (syscall 69) above for loading a program.

 Relocatable Code Format Tech Ref 1-5

2
Memory Resident Drivers

A memory resident driver (MRD) is a program which permanently resides in
memory. Memory resident drivers are read into system memory from the file
mrdrivers on /F0, /F1, /H0 or /H1 during level 0 reset processing . Themrdrivers

file iscreatedby linkingtogetherzero,oneormorememory residentdriverprogram
(.mrd) files with the buildmrd program. Themrdrivers file also contains system
configuration information.

As themrdrivers file is read from magnetic disk at boot time, the users of tape-only
systems will not be able to use memory resident drivers.

Memory resident drivers may be used for background interrupt processing, pop-up
applications, alteration of existing system calls and 1616/OS inbuilt commands,
etc.

Memory resident drivers may be written as memory-resident transient programs:
they are called when their identifying name is used as a command to 1616/OS,
whether the command is typed in at the keyboard, read from a.shell file or passed
to one of theexecsystem calls. This permits the writing of quick transient com-
mands (such asdel , ren , etc) or altering the operation of existing commands
(1616/OS searches the memory-resident drivers for a command before it searches
the inbuilt command tables). It may also be used to alter the mode of an MRD
which performs background functions.

Using buildmrd.xrel

This program permits the linking together of a number of memory resident driver
programs, whilst specifying certain system information.

The usage of the program is:
buildmrd -s stacksize -v videosize -r rdsize -c colours -l nlastlines -o outfile
-b ncacheblocks -f maxfiles -d ndcentries mrdfile.mrd mrdfiles.mrd ...

The parameters all have sensible defaults, and all are optional, so you need only
use those you want to alter. You should discard earlier versions of this program,
and use the version supplied with 1616/OS Version 4.2 or later. Brief details of
parameters are below.

STACKSIZE
is the amount of space reserved for the system stack in kbytes. If
this not specified it defaults to 32 kbytes or 64 kbytes, depending
on version. If you are heavily into FORTH, etc., you may need
more.

 Memory Resident Drivers Tech Ref 2-1

VIDEOSIZE
is the amount of RAM at the top of memory (ending at $80000 in
an unexpanded system, or 1, 2, 3 or 4 megabytes higher if you have
memory in an expansion board) reserved for video display in kbytes.
If not specified this defaults to 32 kbytes (it cannot be made less),
normally starting at $78000. If you specify 64 kbytes, for example,
it will normally start at $70000.

RDSIZE
is the size of the RAM disk in kbytes, and should be a multiple of
8 kbytes. If not specified this defaults to 200 kbytes. It should not
be made less than 24 kbytes. If themrdrivers file cannot be found
at boot time, the RAM disk size is set according to the setting of bits
0 and 1 of the hardware diagnostic switches.

COLOURS
Colour settings were added to the header structure of the
MRDRIVERS file, as at 1989. Bit allocation in this longword is as
follows:
00-03 Pallette entry 0
04-07 Pallette entry 1
08-11 Pallette entry 2
12-15 Pallette entry 3
16-19 Border colour
This longword issetusing the-c flag inbuildmrd.xrel ,whencreating
the MRDRIVERS file. For example,-c1fa50 will give a border
colour of 1, and pallette entries of 15, 10, 5 and zero (which are
actually the default in any case). If the MRDRIVERS file contains
zero for the colour setting, the system assumes it is an old version
MRDRIVERS file, and sets the colours to the default.

NLASTLINES
Last line recall depth. Set the number of previously input lines
retained by the keyboard line editor. Default is 10 lines of history.

OUTFILE
is the output file pathname. It defaults tomrdrivers .

NCACHEBLOCKS
Number of blocks of memory retained for disk cache (buffers disk
access). These cache system data (root blocks, etc) only, and is not
actually used by this version of the operating system.

MAXFILES
The maximum number of file control blocks available to the system.

NDCENTRIES
Number of directory cache entries, for caching directory contents
of your path.

2-2 Tech Ref Memory Resident Drivers

MRDFILES
is a list of zero or more memory resident driver files. By convention
these filenames end in ‘.mrd ’. If no name extension is given, a.mrd

is automatically added. These programs must comply with the
guideslines set out here for memory resident drivers.

Memory resident driver conventions

A memory resident driver program must comply to the system described here if
it is to work properly (or at all).

AnMRDfile is astandard.xrel filewhoseextenthas beenchanged(byconvention)
to .mrd .

The system clears the MRD’sbssarea when it is first loaded at level 0 reset time.
From then on the MRD’sbss area is safe and private. Early releases 1616 C
compiler’s run-time startup code cleared the bss area on entry to the code. This
results in the MRD’s bss being zeroed each time the system calls the MRD! The
run-time startup code (filecrtapp.s) must be altered if MRDs are to be written in
C.

Themain entry pointofan MRDis its startaddress. Thisaddress is called whenever
the system or a user program performs acallmrdsystem call to communicate with
the MRD. At this entry point the MRD is passed two numbers on the stack. They
are a command number at 4(sp) and a single argument at 8(sp). These are thecmd
andarg arguments to thecallmrd system call. The currently defined commands
are listed below. These are a guideline: some of them may not be appropriate for
a particular driver. If you are writing a driver with its own commands, do not use
commands 0 to 255; these are reserved.

Unless the MRD command is expected to return a value (such as MRD_VERS,
etc) it should return 0 in d0.

The MRD code should nominally preserve all registers except d0, d1, a0 and a1,
but it is probably safer to preverve all registers without exception.

 Memory Resident Drivers Tech Ref 2-3

0 MRD_0RES Level 0 reset: initialise

1 MRD_1RES Level 1 reset: initialise

2 MRD_2RES Level 2 reset: initialise

3 MRD_NAME Return pointer to driver name

4 MRD_VERS Return driver version number

5 MRD_ENABLE Enable driver

6 MRD_DISABLE Disable driver

7 MRD_DOIT Do whatever the driver does

8 MRD_STOPIT Stop doing whatever the driver does

9 MRD_EXECENTRY Return exec command entry point

Commands 0 - 2
The MRD is called with these command numbers when the system
is reset. The MRD should perform any appropriate initialisation,
vertical sync vector installation, memory allocation, etc at this time.
Return 0 in register d0.

Command 3 MRD_NAME
The MRD must return a pointer to a null terminated string which is
the name of the MRD.

Command 4 MRD_VERS
TheMRD must returnabyte in registerd0 which indicates itsversion
number. Bits 0-3 indicate the minor revision level, bits 4-7 indicate
the major revision level. For example, $34 indicates version 3.4.

Command 5 MRD_ENABLE
The MRD enables itself. See below.

Command 6 MRD_DISABLE
On receipt of this command the MRD disables itself, so if it is called
while disabled it does nothing. If the MRD is an executable com-
mand it should set a flag so that it returns zero in response to a
subsequent MRD_EXECENTRY command. An MRD should put
itself in the enabled mode after any level of reset.

If, for example, the MRD’s function is to print the current time on
the screen it should not do this when disabled. See thetrd.mrd for
example code.

Command 7 MRD_DOIT
This is the general way of making the MRD do whatever it does. If,
for example, the MRD’s function is to do a dump to printer of the
currentscreen contents,a call to the MRD with this command should

2-4 Tech Ref Memory Resident Drivers

initiate the printout. If the MRD is currently disabled (via a
MRD_DISABLE) then the MRD_DOIT command should be
ignored.

Command 8 MRD_STOPIT
This is the way to prevent the MRD from doing whatever it does.
In the screen dump code above, for example, an MRD_STOPIT
command may abort the screen dump. If the MRD is a print spooler,
MRD_STOPIT and MRD_DOIT may stop and start the spooler
output.

Command 9 MRD_EXECENTRY
When the MRD receives this command it should return the address
of its entry point when called as a transient program. If the MRD
does not have a transient command calling mode, return zero for
this command.

If the MRD is to be used as a transient program, the address returned here is that
of the start of the transient command handler.

The transient command handling code works in just the same manner as a normal
transient command.exec or .xrel program. When the command’s name (as
returned by the MRD_NAME command) is encountered by the command inter-
preter, the system stacks thenargs, argstr, argtype andargval values and jumps to the
code. The program may open files, print characters, allocate memory, etc. I/O
redirection works normally. Error codes may be returned to the system. Theexit
system call works correctly.

One difference between transient command MRDs and normal transient programs
is that of recursion: rerunning a normal transient from within itself causes a second
copy of the program code to be loaded into memory; this does not happen with
MRD transients: they are simply reentered when theyexecthemselves.

Writing memory resident drivers

The business part of an MRD which is used as a transient program is practically
identical to a normal 1616 program - they in fact have little advantage over, say,
a .xrel file in a RAM disk directory which lies in the head of your execution path,
set by thexpath command. One significant difference is that transient MRD
programs are looked for before the system scans the internal command list; this
enables effective modification (by replacement) of 1616/OS commands.

The system uses the MRD_EXECENTRY and MRD_NAME commands every
time a command is processed, so transient MRDs may change their name and/or
disable themselves at any time.

The major application for MRDs - that for which they were designed - is as pop-up
utilities, system call alterations, background task handling, etc. Obviously, an
MRD should be re-entrant, as the user in a multitasking system may invoke it more
than once.

 Memory Resident Drivers Tech Ref 2-5

An MRD may hook itself into the system using one or more of several methods.
A number of these intercept the system’s functions at a fairly low level: when in
doubt, save all registers on entry and restore them before exit!

Background processing at vertical sync interrupt time

The driver must install itself (using theset_vsvecsystem call) whenever it receives
command 0, 1 or 2. An internal routine is called at the rate specified in the call to
set_vsvecand performs the required processing. If you want it called at more than
50 Hz, use a different interrupt.

Background processing initiated by other interrupts

If the MRD has a routine which is to be called when an interrupt from a device
such as a serial channel occurs, it must install a vector to the internal routine in
the appropriate vector location (possibly a ‘simulated interrupt vector’).

A block driver

If the MRD is a block device driver it must install its driver routines with the
inst_bdvr system call at level 0 reset time, when it receives an MRD_0RES
command.

Character driver

If the MRD is a character device driver, it must install its driver routines with the
add_opdvrand/oradd_ipdvrsystem calls at level 0 reset time, when it receives
an MRD_0RES command.

Keyboard intercept

The MRD may inspect the passing stream of keystrokes by installing itself in the
keyboard scan code processing queue. This is done by calling theset_kvecsystem
call with a pointer to the processing function whenever a level 0, 1 or 2 reset occurs,
and saving the return value in local storage.

The keystroke processing function is called whenever a key is pressed or released.
The scan code to be processed is at 4(sp). When the processor has completed its
task it should jump to the keyboard handler which was installed when this driver
installed itself. The pointer to the old keyscan processing function was returned
from theset_kveccall. Before passing control off to the old handler with a JSR
instruction, the key scan code should be pushed onto the stack, so the called code
has it available at 4(sp); alternatively the stack pointer may be restored, and control
is passed with an indirect JMP instruction.

2-6 Tech Ref Memory Resident Drivers

System call replacement/intercept

The MRD places pointers to its internal routines in the system call jump table by
passing them in theset_stvecsystem call.

The replacement system call handling call code is called whenever the system call
which it services is called (obviously). The call’s arguments appear at 4(sp), 8(sp),
etc. The handler may pass the arguments to the old system call handler if desired
- theset_stveccall returns the old handler entry point. The stack frame must be
identical.

The mrdrivers file

The memory resident driver boot file MRDRIVERS has the following structure:
(most values are longwords, well, actually ints)

Offset Name Usage

0 magic1 Always $601A Actually a BRA 26 (why?)

4 vers MRDRIVERS format version (initially 2)

8 rdsize Size of RAM disk in kbytes

12 memusage Total of all text, data, bss in all drivers in file

16 ndrivers Number of drivers in the file

20 magic2 Always $D80AB7F1

24 stackspace Size of system stack space in bytes

28 vramspace Space reserved for video RAM (at top of memory) in
bytes

32† obramstart Address of the start of on-board memory.

36† mrdstart Address of the start of the MR drivers

40† rdstart Address of the start of the RAM disk

44 vramstart Address of video RAM start

48† colours Pallette and border colours

52 nlastlines last line recall depth (short)

54 ncacheblocks disk cache blocks (short)

56 maxfiles file control blocks (ushort)

58 ndcentries directory cache entries (ushort)

60 chardrivers pointer to 16 chardriver structs

64 padd 28 shorts, for future expansion

 Memory Resident Drivers Tech Ref 2-7

From here, all the MR drivers, in.xrel form are concatenated, including their
headers.

The fields marked † above are not initialised in themrdrivers file. They are only
written in the RAM copy of the above structure.

2-8 Tech Ref Memory Resident Drivers

3
Character Device Drivers

This chapter covers installing and locating input and output character device
drivers.

It also briefly describes the rather elaborate character device structure that provides
considerable control over the detailed operation of the I/O ports by means of the
cdmiscsyscall. A (somewhat easier) control is obtainable by using thechdev

program included on theUsers Disk. This allows alteration of almost all aspects
of the character oriented devices, including reactions to signals, end of file char-
acters, xon, xoff, raw mode, hardware handshake, RS232C signal levels, buffer
sizes, and much more.

Character device MRDs
Character device drivers may be installed in the memory resident drivers file
MRDRIVERS. When the memory resident driver is called with the MRD_0RES
command (at level 0 reset time) it installs the character device driver using the
add_ipdvrand/oradd_opdvrsystem calls, documented below.

The driver installation system calls return the device handle (if there were less than
16 character device drivers currently installed). If the driver is to become standard
output, standard error or standard input, then a call toset_sop, set_seror set_sip
must be performed every time an MRD_0RES, MRD_1RES or MRD_2RES
command is sent to the MRD. Pass the device driver handle to the system call.

Install input driver - add_ipdvr

add_ipdvr(ivec, statvec, name, passval)

d0 10

d1 ivec Pointer to character input code

d2 statvec Pointer to character input status code

a0 name Pointer to colon-null terminated
device identifier name

a1 passval Value passed to input code
& status code

Return Character driver number or -1 if no room

An input character device driver consists of a status routine and an input routine.
The status routine returns in d0 a non-zero number if one or more characters are
available on the input device. The input routine waits until a character is present,
then returns it in d0. Negative error codes may be returned.

 Character Device Drivers Tech Ref 3-1

ivec is the address of the input routine. The input routine is called by the system
whenever a read from the character device is required.passval is passed at 4(sp).
This routine must wait until a character is available, and then return it in d0. All
other registers should be preserved.

statvec is the address of the input status routine. It is called by the system whenever
the status of the device is to be determined.passval is passed at 4(sp). Return the
status (1 = ready, 0 = not ready) in d0. All other registers should be preserved.

name is the address of a null-terminated string which identifies the driver. The
name may be up to 16 characters in length, including the trailing colon and null.
The name of the driver must end in a colon for the driver to be recognised as a
characterdevice. Thename isdistinct fromthenamereturnedbyamemory resident
driver when it recevies an MRD_NAME command.

passval is a number which is available for passing to the driver, whenever the input
or status routines are called. This permits the installation of multiple character
device drivers which in fact all call the same input and status routines. They are
installed with the same addresses forivec andstatvec, but with differentnames and
passvals. The ivec andstatvec routines then use thepassval field to determine which
of a range of character input sources is being accessed.

This system call returns the character device driver number. This is the same
number as that which is returned when the device is opened with the open system
call, or when it is located using thefind_driver system call.

Miscellaneous entry point - add_xipdvr

Character device drivers now support an optional miscellaneous entry point. It is
installed using theadd_ipdvr()system call. The normal form of the system call
is
add_ipdvr(iovec, statvec, name, passval)
The extended form is
add_xipdvr(iovec, statvec, name, passval, miscvec)
Where theiovec must have bit 31 set to indicate to the system call thatmiscvec is
valid.

add_xipdvr(ivec, statvec, name, passval, miscvec)

d0 10

d1 ivec Pointer to character input code
with bit 31 set.

d2 statvec Pointer to character input status code

a0 name Pointer to colon-null terminated
device identifier name

a1 passval Value passed to input code
& status code

a2 miscvec cdmisc handler

3-2 Tech Ref Character Device Drivers

Return Character driver number or -1 if no room

Every input driver MUST have a corresponding output vector, to keep the device
handles in the correct order. The input driver must be installed and removed before
the corresponding output driver.

Callingadd_ipdvr()oradd_xipdvr()with iovec set to zero will result in the removal
of the character device driver.

The miscellaneous vector points to a routine within the driver which is called
whenever a program performs acdmisc()system call.

The writing of character device drivers is not covered here, but basically the
miscellaneous routine receives the following arguments:

4(sp) The character device driver number (its handle)
8(sp) The device’spassval, as given when its input driver was installed.
12(sp) Thecdmisc()command (see below)
16(sp) Argument 1
20(sp) Argument 2
24(sp) Argument 3

The driver should return zero for any command which it does not recognise.

Miscellaneous entry points are optional. In 1616/OS only SA: and SB: implement
it fully. The CON: device has a miscellaneous entry point simply for the purposes
of returning the address of the video driver multi character write routine.

Install output driver - add_opdvr

add_opdvr(ovec, statvec, name, passval)

d0 12

d1 ovec Pointer to character output code

d2 statvec Pointer to character output status code

a0 name Pointer to colon-null
terminated device identifier name

a1 passval Value passed to output code
& status code

Return Character driver number or -1 if no room

An outputcharacter device driver consists of a status routine, and an output routine.
The status routine returns a non-zero number in d0, if one or more characters may
be sent to the device (via the output routine). The output routine waits until a
character may be sent, sends it and then returns. Negative error codes may be
returned.

 Character Device Drivers Tech Ref 3-3

ovec is the address of the output routine. It is called by the system whenever a write
to the character device is required. The character to be transmitted is passed at
4(sp);passval is passed at 8(sp). This routine must wait until the character can be
sent, send it and the return. All other registers should be preserved.

statvec is the address of the output status routine. The status routine returns a
non-zero number in d0, if one or more characters may be sent to the device (via
the output routine) without causing indefinite waits; that is, there is still room in
the device driver output buffer or the device is ready to receive another character.
Either way, a non-zero return from the status routine indicates that a character may
be sent without causing a wait of unknown duration. Thestatvec routine is called
by the system whenever the status of the device is to be determined.passval is
passed at 4(sp). Return the status (1 = ready, 0 = not ready) in d0.

name is the address of a null-terminated string which identifies the driver. The
string may be up to 16 characters in length, including the trailing colon and null.
The string must end in a colon for the driver to be recognised as a character device.
The string is distinct from the name returned by a memory resident driver when
it receives an MRD_NAME command.

passval is a number which is available for passing to the driver, whenever the output
or status routines are called.

Character Device Drivers
Prior to Version 4.2d, each character device driver (input or output) which is
installed in the system was identified by the following data structure:

Offset Name Size Usage

0 doio int Pointer to input or output code

4 status int Pointer to status code

8 passval int Value passed to driver at call time

12 name 16 char Colon and null-terminated name

These are simply a copy of the values passed to theadd_ipdvroradd_opdvrsystem
call when the driver was installed.

At Version 4.2d, a much more elaborate character device structure was devised.
This new structure allows increased facilities for multiple users, and for custo-
mising the interface to each device. Programs that write directly to the char device
driver tables will still work if they are patching the output driver, but not the input
driver.

3-4 Tech Ref Character Device Drivers

Offset Name Size Usage

0 doio int Pointer to input or output code

4 status int Pointer to status code

8 passval int Value passed to driver at call time

12 name 16 char Colon and null-terminated name

28 lastlines char Last line recall buffers

32 doip int Pointer to input routine

36 ipstatus int Pointer to input status routine

40 ippassval int Optional number to pass to I/P drive

44 miscvec int Pointer to misc entry point

48 sigintchar int If received, send signal down

52 eofchar int End of File character

56 xoffchar int Xoff character

60 xonchar int Xon character

64 resetchar int Reset the system

68 rxcount uint No of chars that have come in

72 txcount uint Number of char gone out

76 intsig ushort If set,interrupt signal pending

78 hupsig ushort If set, hangup signal pending

80 xoffed ushort If set, awaiting Xon, O/P driver
sleeps

82 kiluser ushort If setkilluser call pending

84 hupmode ushort DCD loss mode

86 rawmode ushort If set, ignore all special character

88 miorvec int Multi character read vector

92 miowvec int Multi character write vector

96 modebits ushort Application specific

98 statbits ushort Permission bits

The modebits field is intended for specific applications. The following bits are
defined:

 Character Device Drivers Tech Ref 3-5

0 (1) cdmb_xlateesc Escape code translation
1 (2) cdmb_rxsigpurge Purge Rx buffer on signal recognition
2 (4) cdmb_txsigpurge Purge Tx buffer on signal recognition

Normally you would use thecdmiscsystem call (below) to manipulate this table,
or if working from the command line, use thechdev program (on the Version 4.2
User Disk) to set the values required.

Vary buffer size for a character device - new_cbuf

new_cbuf(dev, addr, len)

d0 81

d1 dev Device identifier

d2 addr Address of new buffer

a0 len Length of new buffer

Return 0 (-1 if bad argument)

This system call may be used to install larger circular buffers for the interrupt
driven device drivers in 1616/OS. At power-on, the buffer sizes are in the 200
byte region, which is not great for print spooling, etc.

To obtain larger buffer areas, pass this system call a pointer to some free memory
(addr), the length of the free memory area (len) and an identifier which selects the
device for which you desire more buffering.

The dev argument selects the device:

dev = 0 Replace serial channel A receive buffer
dev = 1 Replace serial channel A transmit buffer
dev = 2 Replace serial channel B receive buffer
dev = 3 Replace serial channel B transmit buffer
dev = 4 Replace parallel printer output buffer
dev = 5 Replace keyboard input buffer

Do not pass a buffer length of less than 64 bytes.

If the buffer is in allocated memory and is to remain in place after the current
program has exited, the buffer memory should be obtained from the system using
mode 1 for thegetmemsystem call.

Performing thissystemcallwith theaddr fieldequal tozerowill result in thestandard
buffer being restored. The buffer areas are within 1616/OS’s data areas. Do this
before returning to 1616/OS if the buffers are only temporary.

Get pointer to character device driver table - get_dvrlist

get_dvrlist(ioro)

3-6 Tech Ref Character Device Drivers

d0 96

d1 ioro Flag: 1 = output drivers,
0 = input drivers

Return Pointer to character device driver table

The system keeps two arrays of sixteen of the above structures. One array is for
the output drivers, the other for input drivers. An unused entry in the array has a
value of zero in thedoio field.

Theget_dvrlistsystem call returns a pointer to the start of one of the two arrays.
If ioro is zero, a pointer to the output driver array is returned. Ifioro is non-zero, a
pointer to the input driver list is returned

The find_driver system call - find_driver

find_driver(ioro, name)

d0 95

d1 ioro Unused

d2 name Pointer to device name or a device handle

Return Device handle or pointer to chardriver structure or error
code.

This system call has been worked to provide individual access to each device’s
chardriver structure.

If name is less than 16 this system call returns a pointer to the chardriver structure
for the corresponding character device driver. Otherwisename is assumed to be a
pointer to a string such as "CON:" and a search is performed for that character
device driver.

If found its handle is returned, otherwise a negative error code is returned.

The cdmisc system call - cdmisc

cdmisc(dvrnum, cmd, arg1, arg2, arg3)

d0 133

d1 dvrnum Character device driver number (device handle)

d2 cmd Command

a0 arg1 Argument 1

a1 arg2 Argument 2

a2 arg3 Argument 3

Return Varies. Negative ifdvrnum is bad.

 Character Device Drivers Tech Ref 3-7

A large data structure (chario.h struct chardriver) is associated with each character
device driver. Thecdmisc()system call provides access to this data structure, and
to the driver’s miscellaneous entry point if it has one. You can make easy use of
this syscall from the command line by using thechdev program available on the
V4.2 Users Disk.

dvrnum is the handle of the character device. It is the device’s file descriptor. It is
the number which was returned when the device’s driver was installed.

This call will return zero ifcmd does not require a return value, or ifcmd requests
a call to the device’s miscellaneous entry point and it does not have one.

cmd defines the mode of the system call. At this stage commands 0 to 31 are acted
upon by thecdmisc()code in the operating system and require no action by the
driver itself. This limit of 0 to 31 may present problems at some future time. Other
commands are device specific and are acted upon by the miscellaneous code within
the device driver.

The values forcmd are defined inchario.h .

0: cmd = CDM_OPEN
An open()or creat()system call upon this device has been performed.

1: cmd = CDM_CLOSE
The device has been closed. Closes and opens do not balance correctly if the user
program does not explicitly do it. Character devices are not closed if they were
opened by a command line I/O redirection.

2: cmd = CDM_SETSIGCHAR
The device driver compares incoming characters with the ‘sigintchar’ element in
the chardriver structure. When a match occurs a SIGINT is sent to the process
which is blocking the shell running from that character device. The ‘sigintchar’
for CON: is normally $83, (ALT-^C). This call sets the ‘sigintchar’ to ‘arg1’. Set
it to 256 ($100) to disable.

3: cmd = CDM_READSIGCHAR
Returns the current setting of the addressed device’s sigint char.

4: cmd = CDM_SETEOFCHAR
Sets the end-of-file character for the addressed character device. Set to 256 to
disable.

5: cmd = CDM_READEOFCHAR
Returns the current end-of-file char for the addressed device.

8: cmd = CDM_SETXOFFCHAR
arg1 sets the character which the device driver uses for flow control. This is the
‘xoffchar’ in the chardriver structure. The driver compares incoming characters
with this character. When a match occurs output from the device is suspended
until an ‘xonchar’ is read. The normal ‘xonchar’ for CON: is $D3, which corre-
sponds to ALT-S. Set to 256 ($100) to disable.

9: cmd = CDM_READXOFFCHAR
Returns the current ‘xoffchar’ for the addressed device.

3-8 Tech Ref Character Device Drivers

10: cmd = CDM_SETXONCHAR
arg1 sets the ‘xonchar’, which, when received, restarts suspended output. Normally
$D1 for the CON: driver (ALT-Q). Set this to 256 ($100) to disable.

11: cmd = CDM_READXONCHAR
Returns current ‘xonchar’ for the addressed device.

12: cmd = CDM_SETRESETCHAR
The character device driver compares incoming characters with the ‘resetchar’
field in the chardriver structure. If a match is found the driver performs a
warmboot()system call. This field is $92 for the CON: driver (ALT-^R). This
commandmovesarg1 to the ‘resetchar’ for theaddresseddevice. Use256 todisable.

13: cmd = CDM_READRESETCHAR
Returns the current ‘resetchar’ for the addressed device.

14: cmd = CDM_SENDSIGINT
This command is performed by the character device driver at interrupt time when
it matches an incoming character with the ‘sigintchar’ field in the chardriver
structure. The operating system records the character device driver number and
will shortly send a SIGINT to the process which is blocking the shell running off
that device. This is how ALT-^C works.

15: cmd = CDM_SENDSIGHUP
Like command 14, except a SIGHUP is sent.

16: cmd = CDM_KILLUSER
Like the above, but akilluser() system call is performed upon the appropriate shell
process.

17: cmd = CDM_SETRAWMODE
Sets the ‘rawmode’ field of the addressed device’s chardriver structure to ‘arg1’.
If ‘rawmode’ is set all input processing is disabled: SIGINT, resets, xon, xoff
characters are all passed through. This facility is provided so that the device may
be put in raw mode without having to individually record and disable every magic
character in the structure.

18: cmd = CDM_READRAWMODE
Returns the ‘rawmode’ field from the addressed device’s chardriver structure.

19: cmd = CDM_MIORVEC
If the character device driver supports multichar reads it must return the address
of its multichar read routine when it receives this command. If the driver does not
support multichar reads, it returns 0.

The multichar read entry point is called with the following arguments:

4(sp): Device handle (or file descriptor)
8(sp): Memory transfer address
12(sp):Number of bytes to transfer
16(sp):Pass value with which the input device driver was installed.

 Character Device Drivers Tech Ref 3-9

The driver returns the number of bytes actually read to the passed address, which
must be less than or equal to the passed byte count. The driver should return if an
incoming character matches the chardriver end of file character and the device is
not in raw mode.

It should return BEC_RPASTEOF error code if an eofchar is read as the very first
byte. It should return on a newline character. It should compare each character
with the resetchar,eofchar, sigintchar, etcand take the appropriate action, provided
the device is not in raw mode.

The multichar read entry point is called directly from within the operating system,
so it should preserve the machine registers (except for d0).

The device driver obtains a pointer to the chardriver structure for the addressed
device using thefind_driver() system call. For performance these tables should
be found at installation time and their addresses should be saved within the driver’s
storage.

20: cmd = CDM_MIOWVEC
Similar to CDM_MIORVEC, the driver returns its multi char write entry point or
0 if not implemented. The write code is called in a similar manner to the read
code, expect that it must only return after all the characters have been sent and it
need do no special character processing, except for looking at the ‘xoffed’ field
in the chardriver structure to see if output is suspended. The value passed to the
multichar write code at 16(sp) is the pass value which was supplied when the output
device was installed, rather than the input device.

21: cmd = CDM_SETHUPMODE
Sets the ‘hupmode’ fieldof thedevice’schardriver structure toarg1. The ‘hupmode’
field tells the character device driver what to do when a loss of carrier (DCD signal)
is detected at interrupt time.

hupmode = 1: Send a SIGHUP to all processes which are running from a shell
running off the device

hupmode = 2: Perform akilluser() system call upon the shell running on the
device.

hupmode = 3: Send a SIGINT to the process which is blocking the shell running
off that device.

It is the character device driver’s responsibility to perform these actions at interrupt
time when loss of carrier is detected, based on its ‘hupmode’ field.

22: cmd = CDM_READHUPMODE
Return the addressed device’s ‘hupmode’.

23: cmd = CDM_HASMISCVEC
Returns true if the addressed device has a miscellaneous entry point vector
installed.

3-10 Tech Ref Character Device Drivers

24: cmd = CDM_SETUSERBITS
There is a ‘userbits’ field in the char device structure the use of which is basically
not defined at this stage, except for bit 0 which, if set, is intended to tell the driver
to perform TVI950 escape code to some other escape code translation. This
description seems a little dubious. Ask me about it when I work out what it means.

If arg1 is zero,arg2 is ORed into the ‘userbits’.
If arg1 is 1, arg2 is inverted and ANDed into the ‘userbits’.
Otherwise the ‘userbits’ field is returned unchanged.

The following call modes are not handled by the operating system. Any action or
return value is handled by the device specific driver code, which may be in the
ROMs, or in an MRD.

32: cmd = CDM_SETMODE
arg1 is treated as a pointer to the standard serial I/O programming structure as
described in the documentation for theprog_sio()system call. The system call
cdmisc(handle, CDM_SETMODE, pointer, 0, 0)
is a now a preferable way of programming a serial device, as it should work with
other hardware, if added. From the command line, use thechdev program for this.

33: cmd = CDM_READMODE
Thedriver moves thestandard serial I/O programming structure tomemory pointed
to by arg1.

34: cmd = CDM_SETDTR
If arg1 is non-zero, thedriverasserts thedevice’sDTR signal;otherwise it is cleared.
eg:cdmisc(OPEN("SA:", 0), CDM_SETDTR, 1, 0, 0) will assert DTR on serial channel A.

35: cmd = CDM_SETRTS
Same as above, for RTS signal.

36: cmd = CDM_READDCD
Returns non-zero if the addressed device’s DCD signal is currently asserted.

37: cmd = CDM_READCTS
Returns non-zero if the addressed device’s CTS signal is currently asserted.

38: cmd = CDM_READBREAK
Returns non-zero if the addressed device is receiving a BREAK condition. But is
this only active when polling, or after any break is received?

39: cmd = CDM_SETHFC
If arg1 is non-zero, sets the device into hardware flow control mode. For the SCC
this is the default. DCD qualifies receive data, CTS is used for hardware flow
control, DTR is always asserted, RTS is negated when the device receive buffer
is nearly full.

When hardware flow control is disabled the SCC asserts both RTS and DTR and
then runs in 3 wire mode, competely ignoring the handshake signals. The SCC
channel is taken out of ‘auto-enables’ mode.

 Character Device Drivers Tech Ref 3-11

40: cmd = CDM_SETBREAK
If arg1 is non-zero, start a break condition on the transmitter of the addressed device.
Otherwise clear the break condition. Remember to clear this after use, and check
the timing required by the other device when using break.

41: cmd = CDM_TXCOUNT
Returns the number of characters still buffered for transmission from the addressed
device.

42: cmd = CDM_RXCOUNT
Returns the number of characters which are available in the software receive buffer
which the driver maintains for the device.

43: cmd = CDM_TXROOM
Returns the number of characters which can be sent to the device’s output channel
(via thewritesystem call, etc) before the write will block due to the software output
buffer filling up.

44: cmd = CDM_RXROOM
Returns the number of characters which can still be received on this device before
its software receive buffering overruns.

45: cmd = CDM_TXFLUSH
Wait until all buffered transmit characters have been sent.

46: cmd = CDM_TXPURGE
Zero the transmit buffer pointers, dumping all pending output.

47: cmd = CDM_RXPURGE
Zero the receive buffer pointers, dumping all pending input.

48: cmd = CDM_RXPEEK
Returns the next character which will be read from the input device (via aread(),
getchar()system call, etc). If no character is available, returns -1.

49: cmd = CDM_SETTXBSIZE
Sets the size of the device’s transmit buffer toarg1

50: cmd = CDM_SETRXBSIZE
Sets the size of the device’s receive buffer toarg1

51: cmd = CDM_READTXBSIZE
Returns the current size of the device’s transmit buffer.

52: cmd = CDM_READRXBSIZE
Returns the current size of the device’s receive buffer.

53: cmd = CDM_VERSION
Returns the low-level device driver version number. For the drivers within
1616/OS (SA: and SB:) the operating system version is returned here.

54: cmd = CMD_READHFC
Returns the hardware flow control state.

3-12 Tech Ref Character Device Drivers

4
Block Device Drivers

A block device driver is a collection of routines which handle the transferring of
1024 byte data blocks to and from a physical device. 1616/OS contains five block
device drivers: /RD, /F0, /F1, /H0 and /H1. Except for the /RD, these all involving
passing the data to the Z80 disk controller card. Full details of the disk drive
controller card low level routines are provided in theDisk Co-processor Card
Manual(SSDCC).

The memory card can also include a SCSI port. At present, this is operated via an
additional driver, installed via an MRD. This provides drives /S0, /S1, etc. These
SCSI drives may be the same drive used by /H0, H1 etc., however as the memory
board SCSI chip is accessed directly by the 68000, /S0 and so on operate con-
siderably faster than /H0.

In future revisions, it is likely that the /S0 drivers will be added to the ROMs.

A total of sixteen driversmay be installed; these will typically reside in the memory
resident drivers file, MRDRIVERS.

This chapter also describes calls for locating a block device driver, and a mis-
cellaneous call. Thebdmisccall allows you to pass commands to a driver. The
commands include flushing buffers, determining how many blocks are available
on the device, and how many are used or free, write protecting devices, disabling
a driver, copying root directory to memory, and other handy functions.

Install a device (Version 3)

Theinst_bdvrsystem call is used to install the driver routines into the system. The
description below covers Version 3 of 1616/OS. See below for more on Version
4 multi-block I/O.

Install a block device driver - inst_bdvr

inst_bdvr(br, bw, misc, name)

d0 100

d1 br Block read entry point

d2 bw Block write entry point

a0 misc Block driver miscellaneous entry point

a1 name Pointer to name of block driver

Return Driver number (negative if installation error)

 Block Device Drivers Tech Ref 4-1

The system searches for an empty location within its internal block driver tables.
If found, thisdriver is installed and itsdrivernumber (in the range0 to7) is returned.
If a driver with the same name as that atname is found it is replaced by the new
driver.

Once installed, block drivers are permanent: level 1 or 2 resets do not remove
them.

Driver 0 is /RD, driver 1 is /F0, driver 2 is /F1, driver 3 is /H0 and driver 4 is /H1.

br is a pointer to the machine language routine which reads a block from the device.
When the system wishes to read a block from the device, it calls this routine, with
the desired block number at 4(sp), and the address to which it is to be read at 8(sp).
The driver must attempt to read the block to the address. If an error is detected, a
negative error code must be returned in d0. If the read is successful, return 0.
Preserve all other registers.

bw is a pointer to the machine language routine which writes a block onto the
device. When the system wishes to write a block to the device it calls this routine,
with the desired block number at 4(sp), and the address from which it is to be
written at 8(sp). The driver must attempt to write the block. If an error is detected,
a negative error code must be returned in d0. If the write is successful, return 0.
Preserve all other registers.

The error code returned by the read and write code may be selected from among
the normal system error codes - see the file system documentation for details.
Typical error return values are -2 (write protected), -5 (I/O error) and -6 (Invalid
block requested).

misc is a pointer to the driver’s miscellaneous function entry point. This is a routine
which is called when the system needs to communicate various information with
the driver. The miscellaneous routine is called with a command code at 4(sp) and
an argument at 8(sp). The currently defined command codes are listed below. If
an unknown command is received, ignore it.

Code 1 MB_FLUSH
The system keeps track of how long it is since a block device was
last accessed. If the device is removable and is about to be accessed
and it has not been accessed for more than 2 seconds (approx) then
this code is sent. With removable media, this code should be
interpreted as meaning that the media may have been changed. If
the device driver does not do block buffering then this code has little
use.

Code 2 MB_RESET
After the system is reset, all block driver miscellaneous routines are
sent this code. The reset level is at 8(sp).

Code 3 MB_VERS
This requests that the software version number be returned in d0.
The 1616/OS floppy disk driver returns the disk controller’s ROM
version here.

4-2 Tech Ref Block Device Drivers

Code 4 MB_NEWDISK
If the media is removable, the system checks the special and the date
fields of the root block for changes whenever the disk has not been
accessed for two seconds. If a change of media is detected, then this
code is sent to the block driver miscellaneous entry point. If the
driver performs block buffering it must discard all buffered data
upon receipt of this command code.

Code 5 MB_DIRREAD
The system is about to read one or more directory blocks: this can
be used to implement directory caching in an MRD.

Code 6 MB_NDIRREAD
The system is about to read one or more non-directory blocks.

Thename argument to theinst_bdvrsystem call is a pointer to a null-terminated
string which identifies the device and its driver. The name must begin with a slash
("/") character. Put the name in upper case, without spaces.

 Multiblock I/O (Version 4)

Earlier versions of the 1616/OS file system called the block device drivers once
for every 1k block which was to be read or written. This significantly limits the
peak performance which can be obtained, due to all the red tape which needs to
be updated between calls.

The file system now uses the newmultiblkio system call for all of its block I/O.

This system call separates the requested reads/writes into runs of sequential blocks,
and passes the information on to the block device driver which performs the
physical I/O. There is a mechanism in the installation of block device drivers, by
which the driver can tell the O/S whether or not it supports multi-block I/O. If the
driver does not support multi-block I/O, themultiblkio system call separates the
call into the appropriate calls to the driver’s single block I/O entry point. This
means that themultiblkio system call should be called for all I/O needs, but only
if the OS version is higher than $3f!

Installing multi-block I/O - inst_bdvr

Theinst_bdvrsystem call has been compatibly altered so that multi-block capable
device drivers can be installed, but old style drivers can still be used.

The usage ofinst_bdvris

inst_bdvr(br, bw, misc, name, bitmap)

d0 100

d1 br Block read entry point

d2 bw Block write entry point

 Block Device Drivers Tech Ref 4-3

a0 misc Block driver miscellaneous entry point

a1 name Pointer to name of block driver

a2 bitmap of device

Return Driver number (negative if installation error)

see section 4.1 of theTechnical Reference Manualfor additional details on the
arguments used here.

If the FIRST character of the string pointed to byname is a control-A (ascii code
$01) then the system assumes that a multi-block capable driver is being installed,
so it

1. Assumes that the real name of the device starts atname + 12. Assumes thatmisc
points not to the miscellaneous entry point, but to the following data structure:
dc.l misc The miscellaneous entry point
dc.l multirw The multi-block I/O entry point
dc.l version Driver version type
ds.l 13 13 longwords, reserved, zero.

Note that the driver must still support the single block read and write entry points,
for compatibility with earlier OS versions.

Themultirw pointer points to code which is passed the following information:

4(sp) Flag: 0 = write, non-zero = read
8(sp) Read/write address
12(sp) First disk block
16(sp) Number of disk blocks

The driver must use this data to perform the physical I/O, and then return either
zero or a sensible negative error code in register d0.

The multi-block I/O system call - multiblkio

multiblkio(dvr, cmd, addr, blockspec, nblocks)

d0 119
d1 dvr Block device number
d2 cmd Function (see below)
a0 addr Read/write address
a1 blockspec Start block number OR pointer

to block list
a2 nblocks Number of blocks to read/write

Return Negative code on error

The call has four modes:

Sequential write:cmd = 0:

The blocks are written to disk onto contiguous blocks, starting at the block whose
number is in register a1 (blockspec), ending at blockblockspec + nblocks - 1.

4-4 Tech Ref Block Device Drivers

Sequential read:cmd = 1:

Similar tocmd = 0, nblocks blocks are read from blockblockspec, to memory ataddr.

Random write:cmd = 2:

In this mode,blockspec points to a list ofnblocks 16 bit block numbers. The system
call sorts out the sequential runs of blocks in the list and performs the necessary
calls to the device driver.

Random read:cmd = 3:

As in mode 2, except data is read, not written.

Other system calls

There are system calls that allow you to locate an MRD driver, and pass miscel-
laneous commands to it. The low level processing of directory commands is
described in the next section.

Locate a block device driver - find_bdvr

find_bdvr(name)

d0 102

d1 name Pointer to block device
name or -1 or 0 to 4

Return Varies

This system call is used to obtain a block device driver’s name from its driver
number, or to obtain a block device driver’s driver number from its name.

If name equals -1 then a pointer to the block device driver structure for the currently
logged device is returned.

If name is in the range 0 to 7 then a pointer to the corresponding block device driver
structure is returned. A negative error code is returned if no driver is installed
under the corresponding number.

If name is greater than 7 then it is assumed to be a pointer to the null-terminated
name of a block device, such as "/RD", "/H1", etc. The name may also be a volume
name such as "/APPLIX", rather than a physical device name. If the named driver
is found then a number in the range 0 - 7 is returned. This is the block device
driver’s number.

The block device driver structure contains many elements and is not documented
by Applix. However the first entry will always be the null-terminated name of the
block device.

 Block Device Drivers Tech Ref 4-5

Call block driver miscellaneous function - bdmisc

bdmisc(bdnum, code, arg1)

d0 117

d1 bdnum or bdvrnum Block driver number

d2 code Type of miscellaneous call

a0 arg1 Additional argument

Return Result of call

This system call communicates with a block device driver’s miscellaneous entry
point. A call is made to the misc entry point of the driver whose number isbdnum.

bdnum (sometimes calledbdvrnum) is the number of the block device driver.

code is the command which is to be passed to the driver. It may be one of those
listed below, or user defined codes. If defining your own command codes to send
to a block driver, do not use codes 0 - 255; these are reserved by Applix.code is
passed to the block driver at 4(sp).codes $100 to $104 were defined in Version
4.0b,codes $105 to $107 in Version 4.2d. Andrew says he forgot about reserving
them. Those uses that are known are listed below.

code = $1 mb_flush
Flush the buffers.

code = $2 mb_reset
Reset has occurred.

code = $3 mb_version
Return driver version number.

code = $4 mb_newdisk
New disk has been detected.

code = $5 mb_dirread
About to do directory block I/O.

code = $6 mb_ndirread
About to do non-directory block read.

code = $7 mb_bmbread
About to do blockmap I/O.

code = $100 mb_nblocks
returns the total number of blocks on the device.

code = $101 mb_usedblocks
returns the number of blocks currently used on the device.

code = $102 mb_freeblocks
returns the number of blocks free.

4-6 Tech Ref Block Device Drivers

code = $103 mb_readroot
moves a copy of the root directory entry (the one in the root block)
to memory pointed to byarg1.

code = $104 mb_reread
forces the system to re-read the device’s bitmap, even if it is a
non-removable disk. This should be done after a program modifies
the disk bitmap behind the file system’s back.

code = $105 mb_disable
disable the block device driver.

code = $106 mb_uid0
only UID 0 can access the device.

code = $107 mb_wrprot
write protect the device.

arg1 is an additional argument passed to the driver at 8(sp).

The value returned by the block driver miscellaneous entry point is passed on by
this system call.

 Block Device Drivers Tech Ref 4-7

5
File Systems

This section describes files, directories, block devices and their associated data
structures.

Directory entries

A directory entry is a 64 byte data structure which describes a file or a subdirectory.
There is a single directory entry in a block device’s root block (block 0) which
describes the root directory (typically blocks 3 - 9 on a floppy).

The directory entry structure is as follows:

Offset Size Name Usage

0 32 char file_name 32 byte null-terminated name

32 8 char date File creation date.

40 ushort user_id User I/D

42 long load_addr Load address of.exec file

46 long file_size Length of file/No of dir blocks

50 ushort statbits Status bits

52 ushort blkmapblk The block which contains the file’s block
map block / directory start block

54 ushort magic If == V4_2magic (d742, etc), ffblocks OK

56 4 ushort ffblocks First four blocks of file

FILE_NAME
is the name of the file/directory which this directory entry describes.
It contains no "/" characters. It is in upper case and should contain
no control characters. If the first entry in this field is zero then the
directory entry is not used. When a file is deleted by theunlink
system call the file’s blocks are released and the first character of
its filename is copied to the end of the file name (31 bytes in) before
the first character is set to zero. This permits files to be un-deleted
- the results may not be good if the disk has been written to since
the file was deleted. Runfscheck.xrel acrossa disk after un-deleting
a file.

 File Systems Tech Ref 5-1

DATE
is the date of modification of the file/directory which this directory
entry describes. Adding new files to a directory does not affect the
date in the directory’s directory entry.

USER_ID
is the user identification number, which normally defaults to 0.

LOAD_ADDR
is the address at which.exec files are to be loaded and executed. It
is set to zero for other types of file.

FILE_SIZE
has a different meaning depending upon whether the directory entry
describes a file or a directory. If it describes a file, the FILE_SIZE
fieldcontains the length of it in bytes. If the directory entry describes
a directory (sub-directory), then the FILE_SIZE field contains the
number of 1024 byte blocks which the subdirectory occupies. These
blocks are contiguous for all directories.

STATBITS
contains file attribute bits. The following bits are defined:

Bit 0 - A If set, the file has been backed up somewhere.

Bit 1 - D If set, this directory entry describes a directory

Bit 2 - L If set, the file/directory described by this directory entry cannot be
modified.

Bit 3 - R Disable others from reading.

Bit 4 - W Disable others from writing.

Bit 5 - X Disable others from executing

Bit 6 - S Provided for symbolic links

Bit 7 - F Tells whetherffblocks is valid (file under 4 kbytes, Version 4.2)

Bit 8 - H File to be hidden from directory listing.

Bit 9 - B Boring. Not to be backed up.

BLKMAPBLK
field use depends upon whether the directory entry describes a file
or a directory. If it describes a file, then the BLKMAPBLK field
contains the number of the block which contains a list of the blocks
occupied by this file, in the order used. If the directory entry
describes a directory (sub-directory), then the BLKMAPBLK field
contains the number of the block at which the sub-directory’s
contents start.

5-2 Tech Ref File Systems

MAGIC
A magic number to inform us whether the following four unsigned
values are pointers to blocks. The magic number is d742, with the
42 changing with each version of the operating system. This also
lets us tell which version of the operating system produced a file.

FFBLOCKS
Four pointers to the first four blocks of a file on a disk. Speeds up
disk access because we don’t need to check the BLKMAPBLK to
locate short (under 4 kbyte) files.

The structure of block devices

A block device consists of the root block (block 0), the block usage bitmap, the
boot block, the root directory and the actual storage area.

The root block

The root block is always at block zero of a device. The root block structure defines
the structure of the disk. It contains the following fields:

Offset Size Name Usage

0 word NBLOCKS Number of blocks on device

2 word SSOSVER Version of 1616/OS under which the
device was initialised

4 word BITMAPSTART The block at which the device block
usage bitmap starts

6 word DIRSTART The block where the root directory
starts

8 word NDIRBLOCKS The number of blocks in the root
directory

10 word REMOVABLE Non-zero if the media is removable

12 word BOOTBLOCK Number of block which contains
boot code

14 long SPECIAL Randomised number for distinguish-
ing disks

18 64 bytes ROOTDIR A directory entry which describes
the root directory

In detail:

 File Systems Tech Ref 5-3

NBLOCKS
The number of blocks on the device. This is read when the disk is
logged. If a disk with a certain number of blocks is inserted into a
drive which previously contained a disk which had a different
number of blocks, the change is detected.

SSOSVER
This is the 1616/OS version number of the disk. The disk structure
has changed slightly in the change from 1616/OS V2.4 (version =
$24) to 1616/OS version 3.0 (version = $30).

BITMAPSTART
The number of the block at which the block usage bitmap com-
mences.

DIRSTART
The number of the block at which the root directory commences.
This field duplicates the BLKMAPBLK entry in the root directory
entry ROOTDIR, but has been kept so that 1616/OS V3.0 disks may
be read under 1616/OS V2.4

NDIRBLOCKS
The number of blocks in the root directory. This field duplicates
the FILE_SIZE entry in the root directory entry ROOTDIR, but has
been kept for 1616/OS V2.4 compatibility.

REMOVABLE
This flag is non-zero if the media is removable and the system has
to check for swapped disks. There is a performance benefit when
using non-removable media; in fact a floppy may be defined to be
non-removable. If this is done the system must be reset when the
floppy is replaced.

BOOTBLOCK
Contains the number of the block which is read in to memory at
$3c00 when booting from disk. If this field is zero then no boot
code exists.

SPECIAL
A randomised number which is (hopefully) unique for every disk.
The system inspects this field and the DATE field in the root
directory entry ROOTDIR for a change which indicates a disk swap.

ROOTDIR
This is a standard 64 byte directory entry. It describes the root
directory of the disk, so bit 1 of the STATBITS field is set. The
DATE field in this directory entry represents the date of creation of
the volume and is also used for detecting disk swaps.

5-4 Tech Ref File Systems

The block usage bitmap

Every block device has a bitmap associated with it which records which blocks
are currently used and which are free to be used.

The bitmap is a sequence of bits. A one means that the corresponding block is
used; a zero indicates that it is free. The most significant bit (bit 7) of the first
byte in the bitmap corresponds to block 0; bit 6 of byte 0 corresponds to block 1,
etc. The bitmap may extend over more than one block: one block contains 8192
bits, so one block of bitmap is needed for every 8 megabytes in the disk.

TheBITMAPSTARTfield in the rootblock identifies theblockatwhich thebitmap
starts. If the bitmap is more than one block long, all the blocks must be contiguous,
starting with the block identified by BITMAPSTART. The system uses the
NBLOCKS field to calculate how many blocks are contained in the bitmap.

Thebitmap usuallystartsat block1 of a disk. Itoccupies however manycontiguous
blocks are required, based upon the number of blocks on the device.

The boot block

The boot block contains the boot program which the system executes at address
$3c00 every time the system is reset.

The BOOTBLOCK field indicates whether or not the disk contains a boot block
to be loaded at reset time and, if so, what block it is. Whenever the 1616 is reset
(by powering on, pressing the reset switch or by) the operating system
performs all initialiation and then goes through all the block drivers in order (/RD
first, then /F0 then /F1 then any others) looking for a device with its BOOTBLOCK
field in the root block non-zero. When such a device is found the indicated block
is loaded into memory and executed at address $3C00 in the 1616.

The current level of the reset (0, 1 or 2) and the block driver number from which
the system is booting are passed on the stack at 4(sp) and 8(sp) respectively. This
allows the boot code to perform whatever level of initialisation is needed.

Note that the RAM disk may be used in this manner. Block 3 is reserved for
booting, however it is not normally used. To use it, read in the root block, set the
BOOTBLOCK field to 3, write out the root block again and then put your boot
code in block 3. Remember that the 1616/OS OPTION 8 must be set to write
enable the system tracks of a block device.

If the disk in drive 0 (/F0) does not contain a boot program, then the system will
attempt to boot from disk 1 (/F1). If there is no second disk or if the second drive
has no disk in it then the attempt to read from the second disk will fail, taking a
few seconds to time out. Look in the SYS directory of the 1616/OS release disk
for the file boot3v.exec or bootv3 . This is the standard boot code.

Alt Ctrl R

 File Systems Tech Ref 5-5

The root directory

The disk root directory is a number of blocks reserved for the home directory of
the disk. Its size is set when the disk is initialised. On floppies theblockdev.xrel

program does this. The root directory should start after the root block, bitmap
block and boot block.

Formatting media

There is no facility here for formatting and initialising the media. A dedicated
program, such as the floppy disk utilityblockdev.xrel , must be written to do this
for each block device.

If the removable field in the root block is set, the device’s root block and bitmap are
only ever read once, after a reset. You can really stuff up someone’s day by fudging
up a removable disk this way.

It is important that all disks have different values in their root block special and
date fields; if two disks have the same values the system will not detect disk swaps
and may corrupt disks. For this reason disk copying programs MUST alter the
special and/or thedate fields in the root block when copying 1616/OS disks. The
diskcopy.xrel utility program does this.

Utility programs

A number of utility programs are supplied on the 1616/OS V3.0 User’s disk.

Initialising block devices

The programblockdev.xrel permits the initialisation of block devices, formatting
of floppies and the conversion of 1616/OS V2.X disks to 1616/OS V3.0

To run this program type
blockdev devname

Wheredevname is the name of the device (/F0, /F1, etc) which you wish to format,
initialise, etc.

There are three levels of disk preparation available with this program. The most
basic level is to simply alter the disk’s boot sector program; you enter the name
of the new boot program and this is written onto the disk. If no boot program
exists on the disk then the disk is skipped in the booting sequence.

In the next level of disk preparation you may ‘initialise’ a disk. This recreates the
disk’s root block, bitmap and directory. All files are lost. The boot block needs
to be rewritten after this.

5-6 Tech Ref File Systems

The next level of disk preparation involves a physical format of the disk, followed
by initialisation, followed by the boot code setup. This will only work on the /F0
and /F1 devices, since these are the only physical devices which this program
knows how to format.

Another option with this program is to upgrade a disk to 1616/OS V3.0. This alters
the disk’s root block into the correct format. The V2.X directory becomes the
V3.0 root directory. The disk is still readable and writeable under 1616/OS V2.X.
Thisoptionmay beused foralteringa disk’s name,aswell asupgrading theversion.

Copying disks

The programdiskcopy.xrel copies a 1616/OS disk block-for-block to another disk.
The DATE and SPECIAL fields in the rootblock of the target disk are altered to
prevent the system from assuming the two disks are the same. Uses multiblock
I/O, if available.

Usage of this program:
diskcopy sourcedev destdev [-f] [-v] [-r] [-s]

Wheresourcedev is the device identifier of the source disk (/F0, /F1, etc) and
destdev is the destination disk identifier. If these are the same then you will be
prompted to perform disk swaps at the appropriate times.

If a bad block is detected on the source disk during reading then a block of zeroes
is written to the destination disk in its place.

The-f flag forces physical formatting of the destination disk. This only works if
the destination device is /F0 or /F1.

The-v flag sets verbose mode: the program prints out more status information as
the copy proceeds.

The -r flag suppresses the re-randomisation of the root block’s DATE and
SPECIAL fields, yielding an exact copy of all blocks of the disk.

The-s option suppresses the use of multi block I/O, and copies a block at a time.

An example of the use of this program:
diskcopy /F0 /F1 -v -f

This will copy from /F0 to /F1, formatting /F1 and printing out status information
as the copy proceeds.

Checking and repairing file systems

The fscheck.xrel utility scans the file system on a disk, reporting any inconsis-
tencies in information on the disk. The old version can not handle files lager than
512 kbytes.

To use this program, type
fscheck devname [-v] [-y] [-yy] [-q]

 File Systems Tech Ref 5-7

Wheredevname is /F0, /F1, etc.

The -v option, if specified, causes the program to operate in verbose mode, so
more status information is printed.

If the -y option is provided this program automatically answers ‘yes’ to all its
questions, except for the last one where it asks if you wish to write out the disk
bitmap; this question must be manually answered.

If the -yy option is given all questions, including the last one, are automatically
answered in the affirmative.

The -q option does a quicker check, that is not as thorough. If a disk passes this,
it is correct. If it fails, use the other flags and run again to fix it.

fscheck.xrel does not check the disk for bad disk blocks - these may or may not
be detected, depending upon where on the disk they lie.

This program performs the following sequence of operations:

1 The file system is descended; information about every file/directory on the
disk is read. Checks are made for blocks used by files or directories which
are in the range 0 to the end of the root directory, or are beyond the capacity
of the disk.

2 The disk bitmap is read

3 For every block on the disk the following error conditions are checked for:

3a Block in range 0 to end of root directory not reserved

3b Block common to two or more files/directories

3c Block reserved, but not in a file/directory

3d Block used in a file/directory but not reserved

The program can fix all these errors except that in 3b: if two or more files share
the same block, you have to manually delete one of them. It is important that
fscheck.xrel be re-run immediately after this has been done.

When the program encounters an error in 3a, 3c or 3d it will report it and ask
whether or not to fix the error. If a ‘Y’ is entered a copy of the disk bitmap is
altered. After all blocks have been processed you will be asked if you wish to
rewrite the altered bitmap image. At this stage no changes have been made to the
disk. Answering ‘Y’ here causes the altered bitmap to be written out.

Errors detected in operation are repaired by deleting the offending block from the
file. The file length is reduced by 1024 bytes (unless the block is at the end of the
file). A message is displayed and you are asked whether or not the fix is to be
made. The file will probably be corrupted. If a file’s block map block number is
an invalid block then the file is deleted. If a directory’s block range is invalid then
it is removed. The user is told about all of these things and prompted to confirm.
A number of these fixes will cause bitmap inconsistencies, but these are fixed later
or on another pass of the file system check program.

5-8 Tech Ref File Systems

This program should be rerun until it gives the disk a clean bill of health; it may
take several passes to fully repair a disk.

If a change is made to the bitmap of a non-removable disk this program exits with
awarmbootsystem call, which is like pressing reset. This must be done because
the system never re-reads the bitmap and root block of a non-removable device,
so alterations to the bitmap would not be noted if this program exited in the normal
manner.

Directory Manipulation

A number of low level calls are available to programmers in Version 4. These
would normally only be used if higher level calls are unsatisfactory for your
purposes.

Manipulate directories - processdir

processdir(pathname, buf, mode)

d0 118

d1 pathname Pointer to name of file/directory

d2 buf Various usage, mainly a pointer

a0 mode Processing mode

Return Negative error code or directory position

This is the internal directory manipulation function. It is a low-level function and
should only be used where other system calls are deemed unsuitable.processdir
scans directories and alters or reads their contents.

There are eightmodes. In thosemodes wherepathname is actually used as a path it
may be a relative path, such as ../dir1/file1, etc.

If an error is detected a negative error code is returned. Otherwise the return value
in mostmodes is the position on the disk of the relevant directory entry. Bits 0-15
of D0 represent the disk block in which the entry resides; bits 16-31 are an index
into the block of the directory entry. The index is in the range 0-15 and must be
multiplied by 64 (the directory entry size) to obtain the offset into the block. The
exception to this is whenmode 2 is used to read thedirectory entry fora rootdirectory
(such as /RD). This directory entry resides in the root block, not in a directory, so
the directory index return is rather meaningless.

Mode = 0 delete file or directory
The file or directory defined bypath is unlinked. buf is unused. The
directory position is returned.

 File Systems Tech Ref 5-9

Mode = 1 rename file
The file_name field in the directory entry of the file or directory
defined bypath is replaced by the name atbuf. The directory position
is returned.

Mode = 2 read directory entry
The directory entry for the file or directory defined bypath is read
to memory atbuf. The directory position is returned.

Mode = 3 write a directory entry
The directory entry for the file or directory defined bypath is over-
written with the directory entry atbuf. The directory position is
returned.

Mode = 4 not used

Mode = 5 write to empty position
The directory whichpath would live in if it existed is scanned for an
empty entry, and if one is found the directory entry atbuf is written
in. If, for example, path is ‘/F0/dir1/dir2/myfile’ then the
/F0/dir1/dir2 directory is scanned. The directory position is
returned.

Mode = 6 change date
The directory entry for the file or directory defined bypath has its
date field altered to the data atbuf. The directory position is returned.

Mode = 7 clear attribute bits
The directory entry for the file or directory defined bypath has its
status bits field AND’ed with the one’s complement (inverse) ofbuf.
Note thatbuf is not being used as a pointer here. The directory
position is returned.

Mode = 8 set attribute bits
The directory entry for the file or directory defined bypath has its
status bits field OR’ed withbuf. Note thatbuf is not being used as a
pointer here. The directory position is returned.

Check permissions - chkperm

chkperm(pdirent, mask, path)

d0 141

d1 pdirent

d2 mask

a0 path

Return

5-10 Tech Ref File Systems

Checks that the current user is permitted to access the file or directory described
in fullpath. A copy of the file’s directory entry is pointed to bypdirent. This routine
has been made a syscall so that more extensive permission checking may be done,
based on the full pathname.

Symbolic links - slink

slink(one, two, three)

d0 134

d1 one

d2 two

a0 three

Return

Ask Jeremy Fitzhardinge, who wrote it.

 File Systems Tech Ref 5-11

6
Other Calls

Many system calls operate at a low level in the OS. Normally the more limited
higher level calls should be used, when available.

In particular, expansion of wildcards, and interpretting of command line arguments
are supported. Installing and altering system call vectors permits the easy
replacement of system calls by your own code.

The mousetrap call is partly documented. The addition of multitasking also
requires more access to system flags, such as when the Z80 is busy. Command
substitution and additional names for commands is made easier by thealiascall.

There is an extensive general purposeoscontrolcall. This includes a considerable
number of modes (36 at the moment). You can selectively disable 1616/OS
commands, find the starting address of on-board ram, force a subsequent reset to
be Level 0, read the xpath and assign, set and read the file creation mask (umask)
or the user number (UID), initialise the video or the keyboard, set or read the beep
volume, or its vector so you can use your own sounds. You can find the SCC ISR
routine, lock in multiblock I/O to a block device, find out if the system has been
powered up, or merely reset, alter the environment strings.

Low Level Calls

In versions before 3.0, the low level calls were not available to external programs,
but they have now been made public. Example code fragments are given for these
calls.

Process command strings - sliceargs

sliceargs(str, argv, wcexp)

d0 93

d1 str Pointer to string to process

d2 argv Pointer to array of 256
pointers (1024 bytes)

a0 wcexp Flag - can expand wildcards

Return Number of arguments or error code

This is an internal 1616/OS function which could be handy and so has been made
public. In particular it gives user programs a relatively simple way of expanding
wildcard representations of pathnames into multiple pathnames.

 Other Calls Tech Ref 6-1

sliceargstakes as input a string consisting of words, separated by whitespace (such
as a command typed into 1616/OS). The separate words within the string are
peeled off and stored in memory. Space for them is obtained with thegetmem
system call, withmode = 0. Longword pointers to the separated words are placed
in theargv array. The return value is the number of words separated. A nil-pointer
is put in theargv array to indicate the end of the valid arguments.

It is the caller’s responsibility to free the memory pointed to by each element in
theargv array after use. The string atstr is not altered.

If the wcexp flag is non-zero then any non-quoted wildcards are expanded before
they are separated. This allowssliceargs to be used simply for wildcards
expansion.

Strings surrounded by quotes are treated as single words.

Example: Suppose that in an application program there is an option to perform
some operation upon some files. The names of the files are to be supplied by the
user and we wish to permit wildcard expansion.

The steps to do this are:

1 Get the string from the user which contains the filenames

2 Assume the string is pointed to by register a0:
move.l #93,d0 * sliceargs syscall
move.l a0,d1 * pointer to string

* to interpret
move.l #argvbuf,d2 * array of pointers
move.l #1,a0 * Permit expansion

* of wildcards
trap #7 * Do it
tst.l d0 * Error?
bmi errorhandler * Complain to user
<more code>

argvbuf ds.l 256 * Room for pointers

3 The argvbuf array now contains pointers to all the constituent words in our
original array. Now use them:

move.l #argvbuf,a3 * Pointer to pointer
* to current string

loop tst.l (a3)
beq done * Nil pointer:

* all processed
move.l (a3),a0 * Get pointer

* to string
move.l a3,-(sp)
bsr dothings * Process the

* string at (a0)
move.l (sp)+,a3
move.l a3,d1 * Prepare to

* free the memory
move.l #64,d0 * freemem system call
move.l a3,-(sp)
trap #7
move.l (sp)+,a3
add.l #4,a3 * Next element in

* the argv array
bra loop

6-2 Tech Ref Other Calls

Interpret and evaluate arguments - clparse

clparse(pargs, ptype, pval)

d0 91

d1 pargs Pointer to array of pointers to strings

d2 ptype Pointer to array of ‘type’ bytes

a0 pval Pointer to array of evaluated numbers

Return Nil

This is an internal function which is used during the processing of commands in
exec. It takes as input an array of pointers to strings, which is pointed to bypargs.
The last pointer in the array must be a nil pointer (value zero). The strings are null
terminated and would not normally contain white space.

ptype is the address of an array of 256 bytes in the user program’s memory areas.

pval is the address of an array of longwords in the user program’s memory areas.
The number of longwords required is equal to the number of arguments atpargs.
The maximum is 256 longwords.

The strings pointed to by thepargs array are examined to determine whether or not
theyare numeric. The preceeding ‘.’ fordecimal and ‘%’ for binaryare understood.
The default radix is 16 (hexadecimal).

If it is determined that a string is a valid number, then the corresponding entry in
theptype array is set to 2. The number is evaluated and placed in the corresponding
entry in thepval array.

If the entry is non-numeric the corresponding entry in theptype array is set to 4. A
pointer to the actual string is placed in the corresponding entry in thepval array.

A value of 1 in an entry in theptype array indicates that the corresponding entry in
thepargs array did not exist. This may be used to calculate the number of arguments
in thepargs array.

Alter/install a system call vector - setstvec

setstvec(vecnum, vector)

d0 80

d1 vecnum Number of system call

d2 vector System call handler entry point

Return Old vector

 Other Calls Tech Ref 6-3

This system call permits the alteration of how a specific system call is handled.
Please use sparingly and/or let Applix know what has changed, so that the system
calls can remain a useful standard set of commands for all 1616 programmers and
users.

When a system call occurs the system stacks a2, a1, a0, d2 and d1, then jumps to
the code pointed to by an entry in a RAM jump table, indexed by the system call
number. Thesetstvecsystem call permits the alteration of entries in this table. It
is passed the number of the system call to vary, and the new entry point for the
system call handler. The return value is the old system call handler entry point.

The RAM copy of the system call jump table is reinitialised at all reset levels.

A new system call handler may expect the first argument to the system call (the
one which is originally passed in register d1) at 4(sp), the second at 8(sp), etc. The
call number is not considered to be an argument. The new system call handler
may jump off to the old system call handler after processing the arguments; stack
discipline must be maintained: push the required arguments onto the stack in
reverse order and JSR to the code which is pointed to by the address returned from
the call tosetstvec. Remember to unstack the arguments and return an appropriate
value in d0 upon completion.

If vector is zero, the default setting of the pointer is written into the system call jump
table: this may be used to restore the system’s normal system call handlers.

If vector is negative the current vector setting is read from the table but no changes
are made.

Mouse, alias and disk lock calls

Mouse operations are not completely documented as yet, and may be subject to
extensive alteration. Thealiascall allows you to readily provide alternative names
for commands. It is best seen by examining the code foralias.c .

The addition of multitasking means that the operating system must be re-entrant.
Where this is not feasible, such as in the file system, flags must to used to indicate
when a resource is already busy.

Install mouse driver intercept - mousetrap

mousetrap(trapno, vector)

d0 46

d1 trapno Intercept number

d2 vector User code entry point

Return Previous vector

This system call has been made available for development purposes. A standard
mouse driver will be included with the release of Version 3.1.

6-4 Tech Ref Other Calls

To maintain the mouse pointer on the screen, the driver needs to know when the
system is about to overwrite the area of the screen which holds the pointer, so it
can be removed before the display is changed, and replaced afterwards. The
mousetrapsystem call permits the driver to installvectors which point to user-
written routines which the system is to call before and after scrolling the screen
and drawing characters on the screen.

There are fourvectors maintained within the system:

Vector 0 (MT_PCVEC) points to code which is to be called just before a character
is placed on the video access page. The following arguments are passed to the
user code:

4(sp) Row number where character is to be drawn.
8(sp) Column number where character is to be drawn.
12(sp) Ascii code of character to be drawn.

Vector 1 (MC_ACVEC) points to code which is to be called just after a character
is placed on the video access page.

Vector 2 (MC_PSVEC) tells the driver to replace its cursor.

Vector 3 (MC_ASVEC) tells the driver to remove its cursor.

All of the above screen positions are in terms of 8x8 character cells, on the absolute
screen.

Thesevectors are normally zero, in which case the system does not use them. If
any of thevectors are non-zero the system does the indirect jump at the appropriate
time. A user program installs a vector by putting its number (0 - 3) intrapno, the
pointer to the user code in vector and performing themousetrapsystem call.

Themousetrapsystem call returns the previous setting of thevector. The user code
should save this and, when the system jumps to the user code to which the new
vector points, you should inspect the oldvector which was returned at installation
time. If it is non-zero, set up the correct stack frame and call the code pointed to
by the oldvector. This permits daisy-chaining of programs which set thesevectors.

The user intercept code should preserve all registers and return with an RTS
instruction.

All four vectors are zeroed at all levels of reset.

If bit 31 of trapno is set, the appropriatevector setting is returned, but no change is
made.

The pre- and post-character output intercepts (those corresponding withvectors 0
and 1) are hooked into therawvid system call. This system call is reentrant, so
your intercept code must be reentrant also. This means that if the code is executing
and an interrupt occurs, during which the code is called again, the servicing of the
interrupt character output should not result in any disturbance to the original code
when the interrupt routine returns. The time-date on screen MRD usesrawvid to
place the time and date on the screen.

 Other Calls Tech Ref 6-5

Extra mousetrap modes are available astrapno 4, 5 and 6. Andrew says these are
used byvcon , but it is too hard to document, and he’s too embarrassed. These are
listed in the syscalls as follows:

savevcontext(4, pointer), which saves the video context.

restvcontext(5, pointer), which restores the video context.

vcontextsize(6), which returns the size of the video context.

The video drivers external definition file includes all the information required
about the window in use. Most information is store as unsigned shorts.

mode_640 if true, 640 mode
curs_rate flash speed
curs_enable turn cursor on or off
thisfg foreground colour
thisbg background colour
cur_vap the crrent video access page
cur_vdp the current video display page
vstate terminal emulation state
esc1save save for second character in ESC sequence
esc2save save for third character in ESC sequence
blkcurs block cursor flag
waswrap flag for suppressing newline after wrap
insertmode character insert mode

x_start (a copy of the current window definitions follow)
y_start
x_end
y_end
bg_col
fg_col
curs_x
curs_y

6-6 Tech Ref Other Calls

ourcurs hardware cursor follows output cursor
x_size
vidomode if true, no esc or control processing
y_size
curpmode current graphics plot mode
gfgcol graphics foreground colour
ogfgcol users’s foreground colour
plotfunc integer pointer to current graphics dot function
underline current underline mask (uint)
g_xsize uint
g_ysize uint
g_xstart int
g_ystart int
cur_window pointer to current window structure
vidram ushort pointer o start of video access ram
chtab ushort pointer
curs_count ushort flash counter
curs_mask ushort, the flashing mask (all 8 byte of it)
pad long

Alias a command - alias

alias(cmd, arg)

d0 135

d1 cmd commands

d2 arg entry point or alias handle

Return Various or error

The six commands available are:

AL_SETVEC (0) Set a vector
AL_READVEC (1) Read a vector
AL_RMVEC (2) Remove a vector
AL_VECTABLE (3) Return the table address
AL_TABLESIZE (4) Return the size of the table
AL_RMALL (5) Remove all aliases

Alias allows command substitution by returning a pointer to a table of substitute
entries. See thealias.c program for sample code. The table of up to 100 entries
(default) can be logged on disk, in the default file/usr/lib/aliases . Definitions
may be recursive. Thealias.c program accepts the parameters ON, OFF, EXIT,
LIST and MAX_ALIASES.

 Other Calls Tech Ref 6-7

Arbitrate Z80 use - z80lock

z80lock(cmd, arg)

d0 127

d1 cmd Mode for this call

d2 arg General use

Return Various

1616/OS maintains a flag which determines whether or not the Z80 is free. This
system call lets you use this flag to arbitrate between different processes which
directly communicate with the Z80.

cmd = 0 Returns value of the interlock flag. 0 = free, non-zero means the
Z80 is being used.

cmd = 1 Returns a direct pointer to the interlock flag. The flag is a longword.
This permits quick access to the flag.

cmd = 2 Returns the PID of the process which currently has control of the
Z80. Naturally this is only meaningful when the Z80 is currently
being used.

cmd = 3 Returns the address of a longword which is used to save the PID of
a process when it gains control of the Z80.

cmd = 4 Gain access to the Z80, with timeout. The system call returns under
two conditions.

A timeout. In this case,arg specifies the timeout duration in 20
millisecond ‘ticks’. If the Z80 is not available within this time, the
call is abandoned, and 1 is returned in register d0.

If the Z80 is available, and access is obtained, all other processes
are locked out. The Z80must be freedif it is to be used again by
any other process. A return value of 0 in register d0 indicates the
Z80 is available.

cmd = 5 Waits forever until the Z80 is free, and only then returns with control
of it. The Z80 must be freed after use.

cmd = 6 Free the Z80, for use by other processes. If the Z80 is not currently
reserved, a negative error code is returned in register d0.

If a process is to use this request/grant system call to directly talk to the Z80, then
it must install a signal handler for itself. This is to prevent it being killed off while
it has access to the Z80. If no signal handler is installed, and the process is killed,
the file system will be left in a zombie state.

The simplest signal handler that will do the job is anrts instruction, installed thus:

6-8 Tech Ref Other Calls

move.l #129,d0 ; proccntrl system call
move.l #12,d1 ; mode 12, sigcatch(vector)
move.l #return,d2 ; the signal handler vector
trap #7
rts

;
; signal handler for this process. We are presented with the
; signal types at 4(sp) and an argument at 8(sp)
;
return:
rts ; stubbed

Miscellaneous system alterations - oscontrol

oscontrol(cmd, arg, arg2, arg3)

d0 125
d1 cmd Command number
d2 arg Various usage
a0 arg2 Varies, not used in most modes
a1 arg3 Varies, not used in most modes
Return Varies

oscontrolis a general purpose system entry point for doing things which do not
deserve a system call of their own. It has expanded somewhat, and now includes
36 modes!

As many modes in this syscall have unrelated functions, the different modes each
have their own name and macro definitions insyscalls.h andsyscalls.mac .

cmd = 0 setibcvec(vec)
arg (known asvec) points to a vector of bytes which is used to selectively disable
1616/OS inbuilt commands. The purpose of this is for removing the availability
of the more damaging commands (such assyscall .101 !) for dial-up use.

The vector is a string of bytes, each of which corresponds to an inbuilt command.
This is used by the current process’s home shell process, and remains in force until
it is either changed or removed, or until the last process attached to this process’s
home shell exits.

If vec is zero, all inbuilt commands are enabled.

When a process sets its home shell’s disable vector, commands are disabled for
all processes which share that home shell process. If oneof these processes invokes
a new shell type process, that process inherits a copy of its parent’s command
disable vector, so that even if the oroiginal shell process exits, the new disable
vector remains in force.

The bytes in the vector can have values of 0, 1 or 2. Zero means a command is
enabled. One means it is disabled (and is bad karma unless you have a way out.
Byte value of two is the most useful. If a user executes a program which changes
its UID to zero, then that program can execute any inbuilt command (presumably
the reason for it changing its User ID).

 Other Calls Tech Ref 6-9

The command list and byte positions are set out below. The list is in historic order
of which command was developed first.

mdb 0 mwaz 23 edit 46
mdw 1 cio 24 <unused> 47
mdl 2 terma 25 quit 48
mrdb 3 termb 26 tarchive 49
mrdw 4 serial 27 pause 50
mrdl 5 fkey 28 tverify 51
mwb 6 setdate 29 ascii 52
mww 7 date 30 time 53
mwl 8 copy 31 xpath 54
mwa 9 syscall 32 option 55
mfb 10 delete 33 volumes 56
mfw 11 cat 34 touch 57
mfl 12 rename 35 filemode 58
mfa 13 dir 36 type 59
mmove 14 msave 37 <ssasm> 60
mcmp 15 mload 38 assign 61
msearch 16 tsave 39 ps 62
base 17 tload 40 kill 63
expr 18 dirs 41 wait 64
go 19 itload 42 set 65
srec 20 cd 43
help 21 echo 44
move 22 mkdir 45

cmd = 1 obramstart()
Returns the address of the start of on-board RAM. Zero if not expanded, $100000
if you have a megabyte of external ram, etc.

cmd = 3 readibcvec() also known incorrectly ascuribcvec
Returns pointer to the inbuilt command disable vector for the current process’s
home shell process. A return of zero indicates no commands are disabled. The
65 current commands are taken in the same order as in the Eproms. See Andrew
McNamara’sdisable.c for a short example of code using this call, with all com-
mands noted.

cmd = 4 forcelevel0() also known incorrectly astrashwrupword
Clears the system’s power-up words so the next reset,syscall(101) , syscall(1) or

will result in a level 0 reset, not the normal level 2 reset.

cmd = 5 readxpath(arg) also known incorrectly asxpname
xpath readback. Returns a pointer to the null-terminated name of execution path
numberindex (argument in d2). Returns -1 ifindex is larger than the number of
xpath s currently set. If no validxpath is given, returns <=0.

cmd = 6 readassign(arg) also known incorrectly asgetassname
Used to read back the current assignments as set byassign . Index (argument in d2)
is used to index into the assignment arrays. If bit 31 ofindex is clear, a pointer to
the old part of the assignment is returned. If bit 31 is set, a pointer to the new part
of the assignment is returned.

Alt Ctrl R

6-10 Tech Ref Other Calls

If bit 30 of index is set, returns the User ID of the assignment. If theindex is out of
range, 0 or -1 is returned.

cmd = 7 setumask(arg)
sets the current process’s file creation mask (umask) toarg, for the current process.
Used in setting the mode bits in any files or directories that are created. A process’s
umask is passed on to any child processes when they are created. The umask bits
are defined in the filefiles.h . The default is new files can not be read, written or
executed by a different user. Don’t set the locked bit, or copy and other things
fail. Returns the old umask.

cmd = 8 readumask()
Returns the current process’s file creation umask.

cmd = 9 setuid(arg)
Sets the current process’s user ID (UID) toarg. This UID is inherited by any child
processes.

cmd = 10 readuid()
Returns the current process’s UID.

cmd = 11 get_bdev(path)
Extracts block device driver number from a relative pathname. Some system calls
need this, so putting a pointer to a pathname inpath and performing this call returns
the number of the block device driver on which that file exists, or an error code if
path is invalid.

cmd = 12 dumplastlines(arg)
Frees all last line information associated with the character device whose handle
is arg. Used by the memory manager to defragment and increase free memory
whengetmemfails. May be used to prevent successive users from seeing what
others have typed. The presence of this command means that a process’s last line
history can be dumped by another process at any time. If your last lines mys-
teriously disappear, then it probably means that a process has requested more
memory than was available. Ifarg is -1, dumpsall last lines for all devices.

cmd = 13 setwildcomp(vec)
Sets wildcard comparison vector.vec is a pointer to a new wildcard comparison
function. Allows you to displace the existing wildcard matching in thesliceargs()
syscall with a better one, if you happen to have a full regular expression matching
code hanging round. Ifvec is zero, the default comparison function is used.

cmd = 14 readwildcomp()
Returns a pointer to the current wildcard matching function, which may be in ROM
or external.

cmd = 15 unused (formerly disk cache manipulation).

cmd = 16 unused (formerly disk cache manipulation).

 Other Calls Tech Ref 6-11

cmd = 17 video_init(level)
Video reinitialisation. Causes a call to the video init code which the system uses
at reset time.level is used in place of the reset level, with zero causing the same
initialisation as a level zero reset, etc. Puts the video back into a sane state, if you
have been doing a few too many experiments.

cmd = 18 kb_init()
Ditto for the keyboard.

cmd = 19 setbeepvol(vol)
vol becomes the new beep volume. Initial value is 50. All polite sound routines
should scale their output by this value. Do not set this greater than 127.

cmd = 20 readbeepvol()
Returns current beep volume. Programs that make sounds should first read this
setting, and scale their output levels to comply with the user’s desired loudness
level.

cmd = 21 setbeepvec(vec)
Installs a new beep vector. Ifvec is zero it is changed to the default beep code in
the ROMs.vec points to a piece of code which receives the following arguments:

4(sp): Non-zero if a different beep sound is desired (caused by b sequence)

8(sp): ’Length’ is 1000 or 2000. Ignore this.

The new beep code may call FREETONE(), but should not perform file system
calls, memory manager calls, etc. Your code should preserve all registers. Any
new beep code should scale its output by the current volume setting.

cmd = 22 readbeepvec()
Returns a pointer to the current beep vector function.

cmd = 23 nouseffbs(arg)
If arg is one, the first-four-block file system tweak in the directory entry is disabled
on reads. Ifarg is 0, the FFB information is used to locate files less than 4 kbytes
long. This call shouldnot be required,but canbeused toprevent confusionbetween
files written under different operating system versions.

cmd = 24 readffbs()
Returns state of the first-four-block disable flag, set above. Normally zero.

cmd = 25 setmemfault(mode)
If mode = 0, the current process will be sent a SIGSEGV (signal 11) on memory
allocator failures (default). Ifmode is 1, the process will not be sent a signal. Other
values ofmode just read the flag for this process.

cmd = 26 rxtxptr(n)
If n = 0, return pointer to the ROM’s SCC (serial) transmit interrupt service routine.
Otherwise return pointer to the receive ISR. This is here for borrowing the ROM
code for use with any additional SCCs attached to 1616 bus.

esc

6-12 Tech Ref Other Calls

cmd = 27 setbdlockin(mask)
mask is a bit mask used for making the operating system perform a process lock-in
around themultiblkio system call for that device. If, for example, bit 0 ofarg is
set,multiblkio calls involving /RD will be performed in a locked in state. Can
only be used if the device driver does nosleep() or snooze() system calls. This
call is only useful with the /s0-/s3 direct SCSI drivers under a heavy process load,
such as the MGR window manager, giving better disk throughput.

cmd = 28 readbdlockin()
Returns current block device driver lockin mask.

cmd = 29 startofday()
Returns non-zero if this is the very first level 0 reset since the 1616 was powered
up, rather than acoldstart() syscall .101.

cmd = 30 pfastchar()
Returns a pointer to an internal very low-level fast multicharacter write to video
routine, called ‘fastchar’. ‘Fastchar’ is called with two arguments on the stack.
One is a pointer to a string of characters, the second is a byte count.
; from assembler

move.l #125,d0
move.l #30,d2
trap #7 ; get pointer to fastchar
move.l d0,a0
move.l #count,-(sp)
move.l #string,-(sp)
jsr (a0)
add.l #8,sp

/* from C */
int (*fastchar)() = (int (*) ())OSCONTROL(30, 0);
fastchar("string",6);

‘Fastchar’ returns if it encounters a control character in the string (ASCII value
less than $20). It returns thenumberof characters actuallyprinted ind0. Characters
are drawn starting at the current cursor position, offset by the current window start.
Characters are masked by the current foreground and background colours before
being written into video memory. Care: blows up if asked to print beyond the last
column of display.

cmd = 31 setbrclock(n)
Sets a new multiplier for SCC programmable baud rate clock frequency (in Hertz).
The initial value is 3,750,000. Pass a new value inn. Settingn to 0 returns the
current clock frequency, without alteration. If you fiddle the clock frequency in
hardware, use this to keep things functioning.

cmd = 32 timer1used()
Returns true if a process is currently using the VIA Timer 1 interrupt source in the
freetone() system call.

cmd = 33 trashassign(uid)
Removes allassigns made by useruid.

 Other Calls Tech Ref 6-13

cmd = 34 trashenvstrings(pid)
Removes all environment strings for the home shell process with PID equal topid.
If pid is -1, then every environment string is removed.

cmd = 35 envsub(in, dollaronly, memmode)
Gives access to the internal environment string substitution code. It performs
substitutions on the zero terminated string pointed to byin, returning a new string
in d0. Space for the new string is allocated via thegetmem() syscall. The memory
allocation mode for the new string is specified bymemmode, which should be 0 or 1 (just
as in gegmem).

Substitutions are performed as described forset inbuilt command (in1616/OS
Users Reference Manual). If dollaronly is non-zero, then only the $ type substitution
is performed. Substitution is also controlled by the relevant bits in the current
process’s home shell’s environment mode bits field.

cmd = 36 doassign(argc, argv)
Low level access to theassign command. Argv points to a list of pointers to
null-terminated strings. The syntax of these strings is the same as that required
by assign . Argc is a count of the number of entries inargv.

6-14 Tech Ref Other Calls

7
Multitasking

Multitasking requires a range of services. These include starting asynchronous
processes, scheduling new processes, providing interprocess pipes, and managing
processes. Have a read through the introduction to multitasking in theUsers
Tutorial Manual.

Managing processes includes obtaining child and parent process IDs, terminating
processes, causing processes to sleep or be suspended for a period, waiting for
them to finish, locking processes so that they are not accidently descheduled.
Sending signals, and installing signal handlers are supported. The relative time
each process can obtain (nice level) can be set.

Various monitor and debug routines are also available, such as providing memory
usage figures for specified processes, detecting a user initiated interrupt, enabling
trace mode, and determining whether a process is interactive.

A special sort of process known as a shell-type process has been introduced. The
most common shell process is that which theiexec() system call starts up. That
is, the process which displays a prompt, reads a command from the keyboard and
executes it.

Shell processes are special because they are treated as the leading process of a
groupof processes. An ‘environment’ is associated with each shell process running
in the 1616. The environment consists of an inbuilt command disable vector, a
groupofoptionbits,andacollectionof ‘environmentvariables’whichhavevarious
uses.

Create a communication pipe - pipe

pipe(ptr)

d0 132
d1 ptr Pointer to 2 longwords
Return 0 or negative error code

This call creates apipe, typically used for communication between two processes.

Pipes are part of the file system: once created they are treated as files. One end
of the pipe is written to using thewritesystem call and the other is read from using
the read system call. Other I/O system calls such asgetchar, fprintf , etc work
correctly on pipes because they all callreadandwrite.

Internally a pipe is represented as a 2 kbyte circular buffer. Writes to the pipe’s
input cause bytes to be added to the head of the buffer. Reads from the pipe’s
output cause bytes to be read from the tail of the buffer.

 Multitasking Tech Ref 7-1

Since the pipe has an input and an output end, thepipesystem call must return
two file descriptors. The pointerptr points to two longwords. The first receives
the file descriptor for the output of the pipe: this descriptor can only be used for
reads. The second longword is set to the file descriptor for the input of the pipe;
it can only be written to.

A pipe is cleaned up when both its input and output ends have been closed with
theclosesystem call.

Asynchronous execa - aexeca

aexeca(argv, isasync)

d0 128
d1 argv Pointer to argument vector
d2 isasync If true, run asynchronously
Return Pid or exit code

This system call is an upgraded version of theexecasystem call.argv points to a
table of pointers to null-terminated strings. The table of pointers must end in a null
pointer. The first pointer in the table must point to the name of an MRD, an inbuilt
command or an executable disk file.

If isasync is non-zero thenaexecastarts the appropriate process asynchronously
and returns the process ID to the calling process. If the 0’th entry in theargv list
refers to anEXEC or XREL file, it is loaded into memory, then scheduled via
schedprep()beforeaexecareturns to the calling process.

If isasync is zero then the calling process is blocked until the desired command has
exited. The exit code is returned to the calling process.

Becauseschedprepis used the new process inherits the current process’s standard
input, standard output and standard error files, as well as its current working
directory and itsnice value.

Programs can install new commands intoaexeca. These can alter theargv vector
beforeaexecauses it, so that aliasing and argument substitution may be performed.
The installed vector can take over the command entirely, so programs can
dynamically replace or act as front ends to inbuilt commands, mrds, or disk based
commands.

Schedule a new process - schedprep

schedprep(addr, argv, flags, ss)

d0 131
d1 addr Code entry point
d2 argv Argument vector

7-2 Tech Ref Multitasking

a0 flags Scheduling options
a1 ss Required stack space
Return PID or error code

schedprepis the lowest level of theexecsystem calls. It is passed the entry point
of a new process and some information which is needed to prepare the process for
running. The process table entries are set up and upon return the new process is
ready to run.

When the system next comes to the new process’s entry in the process table
execution will commence at the addressaddr. The code at this address will find
the ‘nargs’, ‘argstr’, ‘argval’ and ‘argtype’ pointers above the stack pointer in the
usual manner.

On succesful completion the new process’sPID is returned to the calling process.

The arguments to this system call are as follows:

addr The address at which execution is to commence.

argv The address of a list of pointers to the new process’s arguments. The list
is terminated by a nil pointer.

flags

Bit 0 If this bit is set the system must release the memory pointed to byaddr
when the new process exits.EXECandXREL files use this. Theaexeca
system call loads the file into memory and callsschedprepwith this bit
set. When the process eventually departs the scheduler releases the
memory whichaexecaallocated to store the loaded program in.

Bit 1 The new process is asynchronous: if this bit is clear the current process
is suspended until the new one completes. The exit code is returned. If
this bit is set,schedprepreturns to the parent process immediately after
the new process has been prepared for execution. The newPID is returned.

Bit 2 This bit must be set if the new process is a shell type process. This flag
is used by theproccntlsystem call in determining which process to signal
when is entered. It is also used when determining if a process
is interactive or not (seeproccntl).

ss The amount of stack space to be reserved for the new process. 8 kbytes
seems a useful figure here.

The new process inherits the current process’s standard input, output and error file
descriptors. Also inherited is the current directory pathname, and the parent
process’snice level (seeproccntl).

This system call can be used to set up multi-tasking operations within a single
program. For example, a modem transfer program could contain two routines;
one for receiving packets, and the other for transmitting acknowledgements. Each
routine is started viaschedprep. The transmit and receive processes communicate

Alt Ctrl C

 Multitasking Tech Ref 7-3

via common memory. They terminate by doing anexitsystem call, at which point
the control program which started up both sub-processes can exit, allowing the
system to clean up all the allocated memory.

Process management - proccntl

proccntl(mode, arg1, arg2, arg3)

d0 129
d1 mode 0 to 41
d2 arg1 Varies, usually a PID
a0 arg2 Varies
a1 arg3 Varies

Theproccntl system call provides practically all the process management func-
tions. It has multiple quite diverse uses which are laid out in the normal system
call format below. These may be considered to be many different system calls
which happen to enter via the same point.

In most of the following modesarg1 is used to represent a PID. It can do this in
three ways. Ifarg1 is in the range 0 to 63 it is considered to be a PID. If it is greater
than 63 it is considered to be a pointer to a null-terminated string which contains
either a string of decimal digits representing the desired PID number, or it contains
the name of the PID, as displayed in the rightmost column of thePS inbuilt com-
mand.

There is an elaborate structure (defined inprocess.h) containing information about
each process. Normally you would not need to work directly with his structure.
This takes the form:

7-4 Tech Ref Multitasking

pid int process ID
name char pointer to its name
parent int parent ID
child int child, if waiting
idev uint standard in
odev uint standard out
edev uint standard error
ticks long how long has it run
starttime long when it was scheduled
whennext uint when to restart if sleeping
flags short permanent status flags
loadaddr long load address for file
stack long process stack area
stackspace long process stack size
stackbot long lowest address for stack pointer
sp long process current stack pointer
exitcode int value left from exit
cur_path char pointer to working directory name
timeslice int how many ticks it gets each time
sigvec long signal entry point
progsig points to list of pending signals
padd long (previously sigval 12)
uid int process user ID inherited
umask int file creation mask inherited
argv char argument vector
homeshell int PID ofiexecto which this belongs
pad0 char (was user struct pointer, now unused)
alarmtime long when an alarm is to be sent
orig_idev uint stdin when process started
orig_odev uint stdout when process started
orig_edev uint stderr when process started
snoozevec int if non-zero, call here to see if it should run
snoozearg1 long arguments passed to snoozevec
snoozearg2 long
nomemerrflag short if set, don’t signal ongetmemfailure
lastchildpid int last child we started
pg int process group
childtime long accmulated time of child
shellenv points to shell process’s environment
ipcblock points to IPC buffers

The process flags (as reported by mode 15getprocflagsof this command) are
defined as follows:

 Multitasking Tech Ref 7-5

0 (1) ps_blocked sleeping on proc.child
1 (2) ps_parblocked process has blocked its parent
2 (4) ps_exit exit is pending
3 (8) ps_binary program needs text, data, bss freeing
4 ($10) ps_killed died via a kill
5 ($20) ps_sigpending signal it when it is rescheduled
6 ($40) ps_tracetog trace mode switch pending
7 ($80) ps_shelproc it is a shell process
8 ($100) ps_nospcheck suppress stack bound checking
9 ($200) ps_sigblock ignoring signals
10 ($400) ps_bsigpending blocked signal pending
11 ($800) ps_stopped stopped with SIGSTOP
12 ($1000) ps_sigexit signal this PID when anyone exit

The calls in detail:

Return current process ID - getpid

getpid()

d0 129
d1 0
Return Current process ID

Returns thePID of the current process. This is constant for as long as a program
runs. Lts of calls need to know h PID of the current proces. Place result of this
call in a global variable early in your program, so it is easy to access (or persuade
Andrew to give you a general method of having other calls return current PID
when required)

Return a process’s parent process ID - getppid

getppid(pid)

d0 129
d1 1
d2 pid Child process ID
Return Parent process ID

Returns the PID of the parent process to the process whose PID ispid. Usuallypid
is obtained fromgetpid.

Terminate current process - exit2

exit2(exitcode)

7-6 Tech Ref Multitasking

d0 129
d1 2
d2 exitcode Process exit code

Processes which return to the system via an RTS instruction, or via system call 13
(exit), end up here for descheduling and cleanup. All open files associated with
the current PID are closed, unless other processes are holding them open. All
mode 0 memory allocated by the program is released. If necessary the memory
at which the program loaded is also released.

All running processes which are children of the departing one are adopted by the
startup process, ‘<startup>’. If the departing process was asynchronous (did not
block its parent), and its parent process has installed a signal handler, then a signal
is sent to the parent to indicate the death of its child process. If the departing
process is synchronous, its exit code is copied into register d0 of the blocked parent
process, which is restarted.

Unconditionally terminate a process - kill

kill(pid)

d0 129
d1 3
d2 pid Process ID, in the format described above
Return 0 or error code

This will terminate the designated process. Ifpid refers to the current process it
exits. Otherwise the process is cleaned up when the scheduler revisits it. A killed
process terminates with an exit code of -35.

This system call should not be confused with theKILL inbuilt command which in
fact sends a signal to the process designated bypid. Kill can stop a user 0 process,
even if initiated by a different user.

If pid is invalid or does not describe a currently running process, a negative exit
code is returned bykill . Kill now emits the ‘PID: terminated’ message.

Suspend processing - sleep

sleep(ticks)

d0 129
d1 4
d2 ticks Number of 20 millisecond ticks
Return 0

Thecurrentprocess is suspendeduntilticks 20millisecond systemtickshavepassed.

If many processes are running the sleep may last longer thanticks.

 Multitasking Tech Ref 7-7

sleepwill terminate prematurely if the current process is sent a signal: programs
which usesleepfor timing and which can receive signals should check the current
setting of the system tick count, rather than relying on sleep to delay for the correct
period.

A sleeping process uses very little CPU time. 1616/OS does sleeps when waiting
for character I/O, disk I/O and pipe I/O. Should make a nice alarm clock. Versions
prior to 1616/OS 4.2a actually slept one tick more than desired.

Return pointer to process table entry - getproctab

getproctab(pid)

d0 129
d1 5
d2 pid Process ID
Return Process table pointer or error code

Returns a pointer to the process table entry for the process described bypid. The
process table entries are described in the C include fileprocess.h , but will probably
change with new versions of 1616/OS. Hopefully it will be possible to make the
changes in a manner which simply grows the process structure, so that programs
which directly read the process table entries will still work.

Change current working directory - cwd

cwd(pid, path)

d0 129
d1 6
d2 pid Process ID
a0 path Pointer to null-terminated directory path-
name
Return 0 or error code

This call was added so that thecd inbuilt command can change its parent process’s
currentdirectory. The current directory for the processdesignated bypid is changed
and 0 is returned. A negative error code is returned ifpid is invalid. Do not allow
a current process to use this syscall upon itself; use thechdir syscall instead.

Prevent/disable process descheduling - lockin

lockin(mode)

d0 129
d1 7
d2 mode 1 Lock

mode 0 free
Return None

7-8 Tech Ref Multitasking

Callinglockin with an argument of 1 will prevent the scheduler from descheduling
the calling process. Interrupts still occur, but all other processes are suspended.
This can be useful in resolving certain timing races, ensuring exclusive access to
I/O devices, screen/mouse drivers, etc.

Uselockin(0) to unlock the current process.

A process should be locked in for the minimum possible time. It must not do any
file I/O and it must not exit, sleep or do any of theexecsystem calls while locked
in.

Enable run statistic display - runstats

runstats(mode)

d0 129
d1 8
d2 mode 0 disable

mode 1 enable
Return None

If runstats is enabled, the scheduler will display information about the memory
usage of each process when it exits.

The stack usage is calculated by filling the process’s stack area with $ffffffff
longwords when it is prepared for scheduling. When it exits, the stack usage is
calculated by scanning for overwriten longwords.

The allocated memory usage is calculated from memory manager tables at time
of exit, and represents the amount of mode 0 memory allocated to the process when
it exited. This is not necesarily the maximum amount of memory which the process
used.

Displaying the stack usage figures can be used to tune the amount of memory
which must be reserved for a program’s stack space. See the description of the
CHMEMprogram.

Wait for process to exit - wait

wait(pid)

d0 129
d1 9
d2 pid Process ID
Return 0 or error code

The current (calling) process is suspended until the process designated bypid
terminates. The suspended process can still accept signals. An error code is
returned bywait if pid is invalid.

 Multitasking Tech Ref 7-9

Set process time slice - nice

nice(pid, ticks)

d0 129
d1 10
d2 pid Process ID
a0 ticks Time in scheduler
Return Old nice value

This call may be used to vary the number of system ticks for which a process runs
each time it is scheduled.

The defaultnice setting is 1: processes are run for 20 milliseconds each. This
gives good response when a number of processes are running.

When processes are scheduled they inherit their parent’s nice value, so changing
thenicevalue of thehomeiexecprocesswill effectively change it forall subsequent
processes. Setting a nice value of -1 for the ticks value will return the processes
current timeslice, without changing it.

Send a signal - sigsend

sigsend(pid, arg1, arg2)

d0 129
d1 11
d2 pid ID of process to signal
a0 arg1 Argument to process
a1 arg2 Argument to process
Return Target process’s flags

The designated process is sent a signal.arg1 is nominally the signal type, and about
30 values are reserved: all the rest may be user defined.arg2 is also user defined.
Here is the current list of signals; note the first 16 are compatible with UNIX.

7-10 Tech Ref Multitasking

sighup 1 hangup (not used by terminal driver)
sigint 2 interrupt (C otr
sigquit 3 quit \
sigill 4 illegal instruction (not reset when caught)
sigtrap 5 trace trap (not reset when caught)
sigiot 6 IOT instruction
sigemt 7 EMT instruction
sigfpe 8 floating point exception
sigkill 9 kill (cannot be caught or ignored)
sigbus 10 bus error
sigsegv 11 segmentation violation
sigsys 12 bad argument to system call
sigpipe 13 write to pipe with no-one to read
sigalrm 14 alarm clock
sigterm 15 software termination signal from kill
sigusr1 16 user defined
sigusr2 17 user defined
sigcld 18 death of a child
sigpwr 19 power fail restart (not used)
sigstop 20 suspend process
sigcont 21 restart it
sigexit 22 someone exited

Install a signal handler - sigcatch

sigcatch(vector)

d0 129
d1 12
d2 vector Pointer to signal handler
Return Previous signal vector

This call installs a signal handler for the calling process.vector points to a routine
within the calling process which is to be used to handle signals sent to this process.
See the signal documentation for details. There is no signals documentation as
yet.

Send ALT-^C interrupt - sendinterrupt

sendinterrupt(rootpid)

d0 129
d1 13
d2 rootpid PID from which to search
Return None

Ctrl Break

Ctrl

 Multitasking Tech Ref 7-11

This call is used to sendan interrupt to the processwhich is responsible forblocking
rootpid. It is used by the keyboard driver when is pressed.

The system call descends the parent-child tree starting from the processrootpid until
it finds a synchronous process upon which all the other processes are waiting. A
signal (SIGINT: 2) is sent to the selected process, which should then exit.

Typically rootpid refers to the shell processiexec. This call will terminate the
process, returning control to the shell.

Note that only one process is signalled. If, for example,iexechas synchronously
run process A, which has in turn synchronously run process B, then only process
B is signalled. If process B is correctly written, or has not installed a signal handler,
it will exit with exit code -35 (killed process). Process A should be written to pick
this up and exit also.

Put a process into trace mode - proctrace

proctrace(rootpid)

d0 129
d1 14
d2 rootpid PID to search from
Return None

proctracesearches down fromthe rootprocess in thesame manneras send interrupt
above. When it finds a blocking process it puts it into 68000 trace mode: the
program counter and, optionally, registers are displayed after every instruction.
Callingproctracea second time terminates tracing.

Placing a call of the typeproctrace(getpid()) in a program’s signal handler is a good
way of finding out where a program is hanging up: run the program, wait until it
hangs up and then type . It will enter trace mode and all will be revealed.

Read process flags from process table - getprocflags

getprocflags(pid)

d0 129
d1 15
d2 pid Process ID
Return Process flags or error code

Reads the ‘flags’ entry from the process table entry forpid. Anerror code is returned
if pid is invalid. Seeprocess.h or the start of this call description for details about
the process table entries.

Determine if process is interactive - isinteractive

isinteractive(pid)

Alt Ctrl C

Alt Ctrl C

7-12 Tech Ref Multitasking

d0 129
d1 16
d2 pid Process ID
Return 0, 1 or error code

This causes a search up through the parent-child process tree until a shell-type
process is found. If the process designated bypid is blocking the shell-type process
then a 1 is returned by this system call. Otherwise a 0 is returned. An error code
is returned ifpid is invalid.

A process uses this call to determine whether or not it is running in the background:
it is a background task if it or one of its ancestors was run asynchronously (with
the& command).

A non-interactive process should produce minimal output on standard output and
standard error, and should not attempt to read from the keyboard. It must run
independently, not interacting with the user for directions.

Enable/disable stack checking - nospheck

nospheck(pid, mode)

d0 129
d1 17
d2 pid Process ID
a0 mode 0 Supress checking

mode 1 Re-enable checking
Return Old value of process table flags

Normally the scheduler checks for a process stack overrun each time a process is
descheduled. Callingnospcheckwith mode = 0 suppresses this checking for the
process described bypid. If mode = 1, checking is reenabled.

Stack checking is important, and this system call should be used sparingly.

Install context switch vector - csvec

csvec(vec)

d0 129
d1 18
d2 vec Pointer to user code
Return Old vector setting

Causes the system to call the routine pointed to byvec every time a context switch
is performed. The called code is passed the new PID at 4(sp), and a pointer to
the new process’s process table entry at 8(sp). Install a vector of 0 to remove.

 Multitasking Tech Ref 7-13

The user code is called with the arguments as below:
4(sp) PID being scheduled/descheduled.
8(sp) Pointer to process table entry for process.
12(sp) Current system tick count, fromget_ticks.
16(sp) 0: PID is being scheduled.

1: PID is being descheduled.
The user code may perform extended process accounting, etc. It should preserve
all registers.

Pointer to current PID - getpcurpid

getpcurpid()

d0 129
d1 19
Return Pointer to current PID

Returns a pointer to a long word which always represents the current process ID.
This can be used for a quickgetpid().

Read signal handler vector - readsigvec

readsigvec(pid)

d0 129
d1 20
d2 pid
Return Signal handler vector

Returns the address of the signal handler routine for the process described bypid.
If no handler, returns zero. This call can be used to determine if a process is
currently running: makepid point to a null terminated process name. If the return
from this call is non-negative, the process is currently installed in the process table.
Returns negative error code if PID is invalid.

File system interlock semaphore - fsbptr

fsbptr()

d0 129
d1 21
Return Pointer to file system interlock sema-
phore.

Returns a pointer to a long word which is the file system lock-out flag. If the long
word is non-zero, then a process is using the file system.

7-14 Tech Ref Multitasking

File system PID - fspptr

fspptr

d0 129
d1 22
Return Pointer to file system PID.

Returns a pointer to a long word which is the PID of the process which is currently
within the file system. Must be qualified by *(fsbptr). That is, only true while
file system busy flag is also true.

Process interlock semaphore - ssptr

ssptr()

d0 129
d1 23
Return Pointer to process interlock semaphore.

Returns a pointer to a long word which, if non-zero, locks the current process in.
Incrementing the longword is a quick way of perfoming alockin(1). Decrementing
is equivalent to alockin(0) call. Do the increment and decrement in a single
instruction to avoid race conditions.

Kill user of shell - killuser

killuser(homeshell)

d0 129
d1 24
d2 PID of homeshell
Return Number of processes killed.

Unconditionally kills all processes whose home shell ishomeshell, but not the actual
homeshell process. A home process is one which was installed as a shell-type
process inschedprep, i.e., it describes aniexectype process. This system call can
beused tocleanup all processesstarted bya user,after theuser logsoff themachine.

Block or unblock signals - sigblock

sigblock(pid, mode)

d0 129
d1 25
d2 PID Process identifier
a0 mode 1: block, 0: unblock
Return 0 or error code

 Multitasking Tech Ref 7-15

Use to prevent signals being sent to the identified process.

Set an alarm - alarm

alarm(n)

d0 129
d1 26
d2 ticks Ticks until alarm
Return Time until next alarm, or error

Permits a process to request that a signal (sigalrm: 14) be sent to it afterticks 50 Hz
system ticks have elapsed. Ifticks is equal to -1, the number of ticks until the next
alarm is returned.alarm(0)clears a pending alarm. Call returns (ticks until alarm).
This value is $80000000 if there is no alarm pending.

Signal blocker - sigblocker

sigblocker(rootpid, sig, arg)

d0 129
d1 27
d2 rootpid Start PID
a0 sig Signal to send
a1 arg Argument to pass
Return

Sends the specified signal and argument to the process which is blocking the
process identified byrootpid. The operating system descends the process table,
starting fromrootpid, until it locates the process which is blocking all its parents up
to rootpid, and signals it. Used in the processing of interrupt.

Sleep until true - snooze

snooze(vec, arg1, arg2)

d0 129
d1 28
d2 vec Pointer to snooze function
a0 arg1 Argument passed tovec
a1 arg2 Argument passed tovec
Return 0, 1 or error

Process can sleep until a condition defined by the process becomes true. The
operating system calls the user-written function pointed to byvec within the
scheduling loop. When it returns non-zero, the process is rescheduled (that is, the
call tosnoozereturns).

The arguments tosnooze() are passed to the user code when the system polls it.

Alt Ctrl C

7-16 Tech Ref Multitasking

A snooze() call terminates when thevec function returns true to the scheduler, or
when the process is signalled. The process’s signal handler is called before the
snoozecall returns. snooze() returns 0 ifvec returns true, returns 1 if a signal is
received.

User code receives arguments as below:
4(sp) arg1
8(sp) arg2
12(sp) system tick count, provided byget_ticks.

The user code should provide whatever tests are required, and return 0 (keep
snoozing) or 1 (break the snooze). Preserve all registers, and don’t try any fanch
syscalls, such as file I/O, character I/O, memory manager calls, etc in your test
code. PID, UID etc., are indeterminate. Example that waits for I/O port follows:

#include <syscalls.h>
waitforbit(ptr, mask)
unsigned char *ptr; /* Pointer to port */
unsigned char mask; /* Bit to wait for */
{

int testfunc();
while (SNOOZE(testfunc, ptr, mask));

/* Loop until bit setting breaks it */
}

/* The scheduler calls this function */
int testfunc(ptr, mask, ticks)
unsigned char *ptr, mask;
unsigned long ticks;
{

if (*ptr & mask)
return 1;

return 0;
}

Send signal to processes - siguser

siguser(pid, sig, arg)

d0 129
d1 29
d2 pid PID of shell process
a0 sig Signal to send
a1 arg Argument to send
Return Number of processes signalled, or error

Sends the specified signal, with specified argument, to all processes whose home
shell process is identified bypid. A home shell process is not itself signalled.

 Multitasking Tech Ref 7-17

Find process’s home shell PID - findhomeshell

findhomeshell(pid)

d0 129
d1 30
d2 pid PID whose home shell is to be found
Return Home shell PID or error

Locates PID of the specified process’s home shell process. Ifpid refers to a shell
type process, then its home shell process PID is returned, not its own PID.

Set nice level of processes - setshnice

setshnice(pid, nice)

d0 129
d1 31
d2 pid Shell type process PID
a0 nice Time slice value
Return 0 or error code

Set time slice period (the number of ticks allocated per scheduling period) of every
process whose home shell PID is that identified bypid. Pid must refer to a shell
type process. Thenicelevel of the shell type process identified bypid is not altered.

Return last child PID - lastchild

lastchild(pid)

d0 129
d1 32
d2 pid Process ID
Return Last child PID

Returns PID of the last process asynchronously started by the process identified
by pid. Handy for writing reentrant code, where a single function is scheduled by
the same piece of code more than one time. Returns zero if no child process is
available.

Switch pending flag - swpptr

swpptr()

d0 129
d1 33
Return Pointer to longword

7-18 Tech Ref Multitasking

Returns pointer to an operating system variable which, if set, indicates that the
currently running process is to be descheduled as soon as it leaves a locked in state.

Kill a group of processes - killdown

killdown(startpid)

d0 129
d1 34
d2 startpid PID from which to start search
Return 0 or error code

Searches down the process or child list from the specified process, unconditionally
terminating all child processes. If one of these is the calling process, it is skipped.

This call is performed by thekill -ka inbuilt command to kill off a process, all
its blocking children, and all their blocking children.

Signal a group of processes - sigdown

sigdown(startpid, val1, val2)

d0 129
d1 35
d2 startpid PID from which to start search
a0 sig Signal to send
a1 arg Argument to pass with signal
Return 0 or error code

Likekilldown(), except the passed signal and argument are passed to the processes,
rather than killing them.

Kill a users processes - killuid

killuid(uid)

d0 129
d1 36
d2 uid User ID
Return 0 or error code

Unconditionally terminates all processes whose user ID is identified byuid. If the
current (calling) process is identified in this group of processes, it is killed after
all the other processes.

Signal a users processes - siguid

siguid(uid, p1, p2)

 Multitasking Tech Ref 7-19

d0 129
d1 37
d2 uid User ID
a0 sig Signal to send
a1 arg Argument to send with signal
Return 0 or error code

Semds the specified signal, with the specified argument. to all processes owned
by the user identified byuid. If one of these processes is the current (calling)
process, it is signalled after all the other processes in the group.

Signal process on exits - setsigexit

setsigexit(pid, mode)

d0 129
d1 38
d2 pid Process to signal
a0 mode 1: enable, 0: disable
Return 0 or error code

If enabled, this call results in the identifying process being signalled whenever
ANY other process exits. The identified process’s signal handler is passed a
sigexit(22) and the exiting process’s PID. Ifmode is zero, signal not sent.

Set process group - setpg

setpg(pg)

d0 129
d1 39
d2 pg New process group identifier
Return New process group

A process group is a number which identifies a group of processes. It may be used
to collectively identify a group of processes for the purpose of killing them or
signalling them. Normally all processes run with a process group ID of 2. This
call allows a process to modify its process group number. All processes inherit
their parent’s process group number when they are created.

If pg is 1, the current process’s group is set to a new value, which is initially 3,
then 4 with the next call tosetpg(), etc.

If pg is zero, then the current process’s process group number is unaltered. A
process may use this to find its current process group number.

For all other values ofpg, the current process’s process group number becomespg.

The new process group number for the current process is always returned.

7-20 Tech Ref Multitasking

Signal processes in a process group - sigpg

sigpg(pg, sig, arg)

d0 129
d1 40
d2 pg Process group number
a0 sig Signal to send
a1 arg Argument to send with signal
Return 0 or error code

Allprocesseswith thespecified processgroupnumber aresignalledwith thepassed
signal, and signal argument. If the calling process belongs to that group, it is
signalled last.

Kill processes in a group - killpg

killpg(pg)

d0 129
d1 41
d2 pg Procss group number
Return 0 or eror code

All processes with the specified process group number are unconditionally
erminated. If the calling process belongs to that group, it is killed last.

Set group file creation mask - setprocumask

setprocumask(pid, umask)

d0 129
d1 42
d2 pid ID of process to alter
a0 umask New umask
Return New umask

Sets the specified process’s file creation mask toumask. Returns new umask. If
umask is -1, the current file creation mask is returned unchanged.

Manipulate environment bits - setenvbits

setenvbits(pid, mask, mode)

d0 129
d1 43
d2 pid Process ID

 Multitasking Tech Ref 7-21

a0 mask Bit mask for environment bits
a1 set 0: clear, 1: set, 2: ea
Return New environment bits

Manipulates environment bit field attached to a shell type process. See the shell
process documentation.

Locates the home shell process of the PID identified bypid, and modifies its
environment bits. This changes the environment of that shell process, all processes
which have it as their homwe shell, and all child processes of it.

If set is zero, set bits inmask are used to clear bits in the environment (that is,mask
is inverted and ANDed into the environment bits).

If set is one,mask is ORed into the environment bits.

If set is two, the environment bits are read. In all modes, the environment bits are
returned. The new programsetenv is provided for manipulation of these bits.

Every time this call is performed, the system records the resulting environment
bit settings, and uses it to start off the root shell process when the system is next
reset. Thus you don’t lose your environment upon reset.

The environment bits are described inenvbits.h , and are as follows:

0 (1) envb_prompten dir name in prompt

1 (2) envb_verbose run in verbose mod

2 (4) envb_dirmode0 no directory sorting

3 (8) envb_dirmode1 0 sort dir by date and time
1 sort dir alphabetically

4 ($10) envb_ibbeep Beep on inbuilt command error

5 ($20) envb_nobak Editors don’t generatebak file

6 ($40) envb_errbeep Beep when programs exit with error

7 ($80) envb_hidefiles Hides files with hidden bit set

8 ($100) envb_assignprompt Truncate prompt with assignments

9 ($200) envb_lowernames Enable lower case filenames

10 ($400) envb_promptgt Enable ‘>’ in prompts

11 ($800) envb_dodsign Do ‘$’ exec environ substitutions

12 ($1000) envb_doarg Do argument environ substitutions

13 ($2000) envb_doarg0 Do argv[0] environ substitutions

14 ($4000) envb_noshellout This user cannot shell out

The default evironment settings are verbose mode commands, directory and > in
prompt, alphabetically sorted directories, beep on inbuilt command errors, lower
case filenames, $ and argv[0] environment substitutions.

7-22 Tech Ref Multitasking

Read environment bits - getenvbits

getenvbits(pid)

d0 129
d1 44
d2 pid Process identifier
Return Environment bits or error

Returns the environment bits of the home shell process of the process identified
by pid.

Convert string to PID - nametopid

nametopid(pid)

d0 129
d1 45
d2 pid PID identifier
Return PID number or error

Converts its argument into a process ID. Ifpid is a number in the range 0 to maxpids
(currently 64), it is simply returned. Ifpid points to a null terminated string of
digits, the string is evaluated as a decimal number and returned. Ifpid points to a
null terminated name of a process, the process table is searched for a process with
a matching name. The PID of the first one encountered is returned.

Send an IPC block - blocktx

blocktx(destpid, addr, length, sig)

d0 129
d1 46
d2 destpid Pid to send block to
a0 addr Address to send block to
a1 length Length of block to send in bytes
a2 sig 0: don’t signal, 1: signal destpid
Return 0 or error code

Sends a block of data to the identified PID. Seeblockrx for more details of use.

Receive an interprocess block - blockrx

blockrx(mode)

d0 129
d1 47
d2 mode Mode of operation
Return Varies

 Multitasking Tech Ref 7-23

Processes use this call to manipulate their interprocess block communication input
queue. There are five modes of operation:

ipcb_gethead (0) Return pointer to head of list
ipcb_blockcount (1) How many blocks are queued?
ipcb_bytecount (2) How many bytes are queued?
ipcb_ftchnext (3) Return next block, 0 if none.
ipcb_fetchwait (4) Get next block, sleep until available.

The input queue hangs off the receiving process’s process table entry, and consists
of a linked list, in the order of receipt. The structure of the linked list is:
Pointer to next structure
whofrom, the sender PID (long)
blocklength, the size of the data block (long)
padd, six longs for future expansion
data, variable size, as unsigned chars

Manipulate environment strings - setenv

setenv(pid, name, setting, mode)

d0 129
d1 48
d2 pid Process ID
a0 name Name part of env variabl
a1 setting Setting part of env variabl
a2 mode Mode of env string substitution
Return 0, 1 or error

Permits alteration of the environment variable strings which are attached to the
home shell process of the process identified bypid. These strings are shared by
the home shell and by all processes which share that home shell.

Name points to a null-teminated string of any length which identifies the envi-
ronment string.Setting is the new string which is associated with thename string.
If setting is zero (a nil poiner), then the environment string identified byname is
remved.

Mode determines how the new name and setting are to be handled by theenvsub()
system call, which is usedin command line substitution. It is a combination of the
following bits, defined inenvbits.h .

envs_dsign 1 Enable ‘$’ type usage
envs_arg 2 Enable substitution in all arguments
envs_arg0 4 Enable substitution at start of command

Note that enabling of substitution is also controlled by bits in the home shell’s
environment bit.

7-24 Tech Ref Multitasking

This call returns 0 if all worked, andname did not previously exist in the envi-
ronment. It returns 1 if all went well, andname was previously defined in the
environment. A ngative eror code is returned on memory allocation failure, bad
PID, etc.

See the documentation on shell type processes, and theset inbuiltcommand for
more details.

Environment string variable - getenv

getenv(pid, name, mode)

d0 129
d1 49
d2 pid Process identifier
a0 name Pointer to name string
a1 mode Search mode
Return 0, error code, pointer to string

Provides access to the environment string variables attached to the home shell
process of the process identified bypid.

Name points to a null-terminated string which identifies an environment variable.
The string comparison is case sensitive, so be careful.

Mode is a mask, consisting of a combination of ENVS_DSIGN, ENVS_ARG and
ENVS_ARG0. If the result of ANDingmode with the environment variable’s mode
(as passed when it was installed) is non-zero, then it is valid.

If no match is found, a value of zero is returned. If a matching string is found, and
theANDingofmode and theenvironment variable’smodesucceeds, thiscall returns
a pointer to the variable’s ‘setting’ string.

If name is less than $4000, then it is assumed to be a numeric index into the envi-
ronment variables. Ifname does not exceed the number of curently installed
environment strings, then a pointer to the corresponding ENVSTRING structure
(defined inprocess.h) is returned. Themode field is ignored in this mode. Ifname
exceeds the number of installed environment strings, then a nil pointer is returned.

 Multitasking Tech Ref 7-25

Index

.mrd, 2-3

.org pseudo-ops, 1-3

/, 4-3

10 add_ipdrv syscall, 3-1
10 add_xipdrv syscall, 3-2
100 inst_bdvr, 4-1
100 inst_bdvr install driver, 4-3
102 find_bdvr, 4-5
11 loadrel, 1-4
117 bdmisc, 4-6
117 1 flush buffers, 4-6
117 100 number of blocks, 4-6
117 101 number of blocks used, 4-6
117 102 blocks free, 4-6
117 103 copy root dir, 4-7
117 104 read bitmap, 4-7
117 105 disable driver, 4-7
117 106 UID 0 access only, 4-7
117 107 write protect device, 4-7
117 2 reset occurred, 4-6
117 3 block drive version, 4-6
117 4 new disk detected, 4-6
117 5 dir block I/O pending, 4-6
117 6 non-dir block I/O pending, 4-6
117 7 blockmap I/O pending, 4-6
118 pocessdir, 5-9
119 multiblkio, 4-4
12 output driver ad_opdvr, 3-3
125 0 setibcvec, 6-9
125 1 obramstart, 6-10
125 10 readuid, 6-11
125 11 getbdev, 6-11
125 12 dumplastlines, 6-11
125 13 setwildcomp, 6-11
125 14 readwildcomp, 6-11
125 17 video_init, 6-12
125 18 kb_init, 6-12
125 19 setbeepvol, 6-12
125 20 readbeepvol, 6-12
125 21 setbeepvec, 6-12
125 22 readbeepvec, 6-12
125 23 nouseffbs, 6-12
125 24 readffbs, 6-12
125 25 setmemfault, 6-12
125 26 rxtxptr, 6-12
125 27 setbdlockin, 6-13
125 28 readbdlockin, 6-13
125 29 startofday, 6-13
125 3 curibcvec, 6-10
125 30 pfastchar, 6-13
125 31 setbrclock, 6-13

125 32 timer1used, 6-13
125 33 trashassign, 6-13
125 34 trashenvstrings, 6-14
125 35 envsub, 6-14
125 36 doassign, 6-14
125 4 trashwrupword, 6-10
125 5 xpname, 6-10
125 6 getassname, 6-10
125 7 setumask, 6-11
125 8 readumask, 6-11
125 9 setuid, 6-11
125 oscontrol, 6-9
127 z80lock, 6-8
128 aexeca, 7-2
129 0 getpid, 7-6
129 1 getppid, 7-6
129 10 nice, 7-10
129 11 sigsend, 7-10
129 12 sigcatch, 7-11
129 13 sendinterrupt, 7-11
129 14 proctrace, 7-12
129 15 getprocflags, 7-12
129 16 isinteractive, 7-12
129 17 nospcheck, 7-13
129 18 csvec context switch, 7-13
129 19 getpcurpid current PID, 7-14
129 2 exit2, 7-6
129 20 signal handler vector, 7-14
129 21 fsbptr interlock semaphore, 7-14
129 22 fspptr file system PID, 7-15
129 23 ssptr interlock process, 7-15
129 24 killuser, 7-15
129 25 sigblock, 7-15
129 26 alarm, 7-16
129 27 sigblocker, 7-16
129 28 snooze, 7-16
129 29 siguser, 7-17
129 3 kill, 7-7
129 30 findhomeshell, 7-18
129 31 setshnice, 7-18
129 32 lastchild, 7-18
129 33 swpptr, 7-18
129 34 killdown, 7-19
129 35 sigdown, 7-19
129 36 killuid, 7-19
129 37 siguid, 7-19
129 38 setsigexit, 7-20
129 39 setpg, 7-20
129 4 sleep, 7-7
129 40 sigpg, 7-21
129 41 killpg, 7-21
129 42 setprocumask, 7-21
129 43 setenvbits, 7-21

Tech Reference i

129 44 getenvbits, 7-23
129 45 nametopid, 7-23
129 46 blocktx, 7-23
129 47 blockrx, 7-23
129 48 setenv, 7-24
129 49 getenv, 7-25
129 5 getproctab, 7-8
129 6 cwd, 7-8
129 7 lockin, 7-8
129 8 runstats, 7-9
129 9 wait, 7-9
129 manage processes, 7-4
129 proccntl, 7-4
131 schedprep, 7-2
132 pipe, 7-1
133 cdmisc(), 3-7
135 alias, 6-7

3c00, 5-4, 5-5

46 mousetrap, 6-4

80 setstvec, 6-3
81 new_cbuf, 3-6

91 clparse, 6-3
93 sliceargs, 6-1
95 find_driver(), 3-7
96 get_dvrlist, 3-6

add_ipdrv syscall 10, 3-1
add_ipdvr, 2-6, 3-1, 3-4
add_opdvr, 2-6, 3-1, 3-3, 3-4
add_xipdrv(), 3-2
add_xipdrv syscall 10, 3-2
additional SCC 125 26, 6-12
addr, 1-4, 3-6
address of ram 125 1, 6-10
aexeca 128, 7-2
alarm 129 26, 7-16
alias 135, 6-7
alias a command 135, 6-7
alt-^C detect, 3-8
Alt Ctrl C interrupt, 7-11
alter syscall vector 80, 6-3
arbitrate calls, 6-8
arbitrate Z80 use 127, 6-8
arg callmrd, 2-3
arg1, 4-6
argstr, 2-5
argtype, 2-5
argv, 6-1
argvalue, 2-5
assign read, 6-11
assign syscall 125 36, 6-14
assign trasher 125 33, 6-13

assignment name 125 6, 6-10
asynchronous aexeca, 7-2
attribute bits, 5-2, 5-10

backed up bit, 5-2
background tasks, 2-5
bad block, 5-7
bad blocks, 5-8
baud rate clock fiddle 125 31, 6-13
bdmisc 117, 4-6
bdnum, 4-6
beep code changes, 6-12
beep volume, 6-12
beep volume 125 19, 6-12
bitmap, 5-5, 5-6
bitmap re-read 117 104, 4-7
bitmapstart, 5-3, 5-5
blkmapblk, 5-1
block 3 ram disk, 5-5
block device driver, 2-6, 4-1
block device drivers, 4-1
block device inst_bdvr, 4-1
block drive version 117 3, 4-6
block invalid, 5-8
block signals 129 25, 7-15
block storage segment (bss), 1-1
block zero, 5-3
blockdev.xrel, 5-6
blockmap I/O pending 117 7, 4-6
blockrx 129 47, 7-23
blocks free 117 102, 4-6
blocktx 129 46, 7-23
boot block, 5-5
boot sector, 5-6
boot3v.exec, 5-5
bootblock, 5-3, 5-5
br, 4-1, 4-3
break code, send, 3-12
Break detect, 3-11
bss, 2-3
bsslen, 1-2
buf, 5-9
buffer 2k for pipe, 7-1
buffer size, 3-12
buffer size changes 81, 3-6
buffer size tx, 3-12
buildmrd.xrel, 2-1
bw, 4-1, 4-3

callmrd, 2-3
carrier loss hangup, 3-10
cdmisc() 133, 3-7
change beep 125 21, 6-12
change buffer size 81, 3-6
change date, 5-10
change directory, 7-8

Tech Reference ii

change reset char, 3-9
change syscall vector 80, 6-3
change xon, 3-8
character driver, 2-6
character driver 133 cdmisc, 3-7
character drivers, 3-1
chardrivers in mrd, 2-7
chdev program, 3-8
check file system, 5-7
clear attribute bits, 5-10
clock fiddle 125 31, 6-13
clock frequency SCC, 6-13
close file detect, 3-8
clparse 91, 6-3
cmd, 2-3
cmd_readhfc hardware control state, 3-12
code, 4-6
colours in mrdrivers, 2-2, 2-7
command disable 125 0, 6-9
compatibility, 5-4
context switch vector 129 18, 7-13
convert string to pid 129 45, 7-23
converting to v3, 5-6
copy disks, 5-7
copy root dir 117 103, 4-7
corrupt disks, 5-6
corrupt file, 5-8
crtapp.s, 2-3
csvec context switch, 7-13
CTS detect, 3-11
curibcvec 125 3, 6-10
current PID, 7-14
cwd 129 6, 7-8

daisy chain mousetrap, 6-5
data, 1-1
datalen, 1-2
date, 5-1, 5-7
DCD detect, 3-11
DCD hangup, 3-10
delete, 5-1
delete directory, 5-9
deschedule prevention, 7-8
detect file open, 3-8
detect power up 125 29, 6-13
dev, 3-6
device driver table 96, 3-6
dir block I/O pending 117 5, 4-6
directory bit, 5-2
directory entry, 5-1
dirstart, 5-3
disable commands 125 0, 6-9
disable descheduling, 7-8
disable driver 117 105, 4-7
disable flow control, 3-11
disable stack checking, 7-13

disk controller version, 4-2
disk repair, 5-8
disk swaps, 5-6
diskcopy.xrel, 5-6, 5-7
disks corrupt, 5-6
display of statistics, 7-9
doassign 125 36, 6-14
doio, 3-4, 3-5
drive version 117 3, 4-6
driver number, 6-11
DTR control, 3-11
dumplastlines 125 12, 6-11
dvrnum character handle, 3-8

empty buffers, 3-12
end of file detect, 3-8
environment string variable 129 49, 7-25
environment strings 125 34, 6-14
environment subs 125 35, 6-14
ENVS_ARG, 7-24
ENVS_ARG0, 7-24
ENVS_DSIGN, 7-24
envsub 125 35, 6-14
error values, 4-2
errors in file system, 5-8
escape code translation, 3-11
evaluate arguments 91, 6-3
exact disk copy, 5-7
exec, 6-3
exec asynchronous aexeca, 7-2
exit signal 135 38, 7-20
exit wait for, 7-9
exit2 129 2, 7-6
expand wildcards, 6-1

fast char output 125 30, 6-13
fast video driver, 6-13
ffblocks, 5-1
file_name, 5-1
file_size, 5-1
file attributes, 5-2
file close detect, 3-8
file creation mask 125 7, 6-11
file open detect, 3-8
file system, 5-1
file system interlock, 7-14
file system PID, 7-15
file system tweak, 6-12
filename, 5-1
find_bdvr 102, 4-5
find_driver, 3-2
find_driver() 95, 3-7
find sigint char, 3-8
findhomeshell 129 30, 7-18
fix bitmap, 5-8
flag Z80 lock 127, 6-8

Tech Reference iii

flags of processes, 7-12
floadrel, 1-2, 1-3
flow control, 3-11
flow control state readhfc, 3-12
flow control xon, 3-8
flush buffers, 3-12
flush buffers 117 1, 4-6
format, 5-6
format floppies, 5-6
freemem, 1-4
frequency SCC, 6-13
fsbptr 129 21 semaphore, 7-14
fscheck.xrel, 5-1, 5-7
fspptr 129 22 file system PID, 7-15

generate .xrel files, 1-3
genreloc.xrel, 1-3
get_dvrlist 96, 3-6
getassname 125 6, 6-10
getbdev 125 11, 6-11
getenv 129 49, 7-25
getenvbits 129 44, 7-23
getfmem, 1-4
getmem, 1-4, 3-6, 6-2
getpcurpid current PID, 7-14
getpid 129 0, 7-6
getppid 129 1, 7-6
getprocflags 129 15, 7-12
getproctab 129 5, 7-8
group kill 129 34, 7-19
group mask 129 42, 7-21
group signal 129 35, 7-19

handle, 1-4, 3-1
hang up on DCD, 3-10
hardware control state readhfc, 3-12
hardware flow control, 3-11
hasmiscvec, 3-10
home shell locate 129 30, 7-18

initialise, 5-6
initialise video 125 17, 6-12
input drive syscall, 3-1
inst_bdvr, 2-6
inst_bdvr 100, 4-1
inst_bdvr 100 install driver, 4-3
inst_bdvr install block device, 4-1
interactive process, 7-12
intercept syscall 80, 6-3
interlock semaphore, 7-14
interlock semaphore process, 7-15
interpret arguments 91, 6-3
interprocess communication, 7-1
interrupt processing, 2-1
invalid block, 5-8
ioro, 3-7

isinteractive 129 16, 7-12
ISR extra SCC 125 26, 6-12
ISR SCC, 6-12
ivec, 3-1, 3-2

kb_init 125 18, 6-12
keyboard Alt Ctrl C interrupt, 7-11
keyboard intercept, 2-6
keyboard reinitialise 125 18, 6-12
kill 129 3, 7-7
kill group 129 41, 7-21
kill user of shell, 7-15
killdown 129 34, 7-19
killpg 129 41, 7-21
killuid 129 36, 7-19
killuser, 3-9
killuser 129 24, 7-15

last line dump 125 12, 6-11
last line information, 6-11
lastchild 129 32, 7-18
len, 3-6
load_addr, 5-1
loader relocating 11, 1-4
loadrel, 1-2
loadrel 11, 1-4
locate driver 102 find_bdvr, 4-5
locate home shell 129 30, 7-18
lock i/o, 6-13
locked file, 5-2
lockin 129 7, 7-8
low level calls, 6-1

Magic 601a, 1-2
magic d80ab7f1, 2-7
magic for V4.2 disks, 5-1
magic1, 2-7
magic2, 2-7
make process group 129 39, 7-20
makexrel.shell, 1-3
manage processes 129 n, 7-4
manipulate directories 118, 5-9
manipulate environment bits, 7-21
manipulate environment strings 129 48, 7-24
maxfiles, 2-7
maxfiles in mrd, 2-2
mb_* 117, 4-6
mb_dirread, 4-3
mb_flush, 4-2
mb_ndirread, 4-3
mb_newdisk, 4-3
mb_reset, 4-2
mb_vers, 4-2
memmode, 1-4
memory allocator failure 125 25, 6-12
memory management, 1-1

Tech Reference iv

memory resident, 1-3, 1-4
memory usage statistics, 7-9
memusage, 2-7
miorvec, 3-9
miowvec, 3-10
misc, 4-1, 4-4
misc entry point, 3-2
miscellaneous system alterations 125, 6-9
mltitasking, 7-1
mode, 5-9
modify terminal sequences, 3-11
mouse driver 46, 6-4
mousetrap 46, 6-4
MRD, 1-3, 2-1
mrd_0res, 2-4, 2-6, 3-1
mrd_1res, 2-4
mrd_2res, 2-4
mrd_disable, 2-4
mrd_doit, 2-4
mrd_enable, 2-4
mrd_execentry, 2-4, 2-5
mrd_name, 2-4, 2-5, 3-4
mrd_stopit, 2-4
mrd_vers, 2-3, 2-4
mrd call, 2-3
mrdfiles, 2-3
mrdrivers, 2-1, 4-1
mrdrivers.xrel, 2-7
mrdstart, 2-7
multi block I/O, 4-3
multi user kill, 7-15
multiblkio, 4-3
multiblkio 119, 4-4
multichar read address, 3-9
multichar write address, 3-10
multiple programs, 1-1
multitask within program, 7-3

name, 3-1 - 3-5, 4-1, 4-4, 4-5
nametopid 129 45, 7-23
nargs, 2-5
nblocks, 5-3, 5-5
ncacheblocks, 2-7
ncacheblocks in mrd, 2-2
ndcentries, 2-7
ndcentries in mrd, 2-2
ndirblocks, 5-3
ndrivers, 2-7
new_cbuf 81, 3-6
new disk detected 117 4, 4-6
nice 129 10, 7-10
nice level, 7-1
nice level of process 129 31, 7-18
nlastlines, 2-7
nlastlines in mrd, 2-2
non-dir block I/O pending 117 6, 4-6

nospcheck 129 17, 7-13
nouseffbs 125 23, 6-12
number of blocks 117 100, 4-6
number of blocks used 117 101, 4-6

obramstart, 2-7
obramstart 125 1, 6-10
option 8, 5-5
oscontrol 125, 6-9
outfile, 2-2
output driver ad_opdvr 12, 3-3
ovec, 3-3
overwrite screen pointer, 6-5

padd for future expansion, 2-7
parent PID 129 1, 7-6
pargs, 6-3
passval, 3-1 - 3-5
path, 1-4
pathname, 5-9
peek at input, 3-12
pfastchar 125 30, 6-13
PID file system, 7-15
PID getpid 129 0, 7-6
pipe 132, 7-1
pipe 2k buffer, 7-1
pointer to current PID, 7-14
pop-up utilities, 2-5
power on reset enable 125 4, 6-10
power up detect 125 29, 6-13
PPID getppid 129 1, 7-6
prevent descheduling, 7-8
print spooler 81, 3-6
proccntl 129 n, 7-4
process command strings 93, 6-1
process flags, 7-12
process group 129 39, 7-20
process interlock semaphore, 7-15
process management 129 n, 7-4
process scheduler 131, 7-2
process table, 7-3
process table 129 5, 7-8
process trace, 7-12
processdir 118, 5-9
proctrace 129 14, 7-12
program stack allocation, 1-2
pseudo-ops, 1-3
ptype, 6-3
purge buffers, 3-12
purge buffers rxpurge, 3-12
pval, 6-3

random, 5-7
raw mode input, 3-9
rawvid, 6-5
rdsize, 2-2, 2-7

Tech Reference v

rdstart, 2-7
read assign, 6-11
read bitmap 117 104, 4-7
read directory, 5-10
read environment bits 129 44, 7-23
read process flags, 7-12
read signal handler vector, 7-14
read xpath 125 5, 6-10
readbdlockin 125 28, 6-13
readbeepvec 125 22, 6-12
readbeepvol 125 20, 6-12
readbreak, 3-11
readcts, 3-11
readdcd, 3-11
readeofchar, 3-8
readffbs 125 24, 6-12
readhfc hardware control state, 3-12
readhupmode, 3-10
readmode, 3-11
readrawmode, 3-9
readresetchar, 3-9
readrxbsize, 3-12
readsigchar, 3-8
readsigvec signal handler vector, 7-14
readtxbsize, 3-12
readuid 125 10, 6-11
readumask 125 8, 6-11
readwildcomp 125 14, 6-11
readxoffchar, 3-8
readxonchar, 3-9
receive IPC block 129 47, 7-23
recursion, 2-5
reenter, 2-5, 6-5
reinitialise keyboard 125 18, 6-12
reinitialise video, 6-12
release memory, 1-4
relocatable, 1-1, 1-2
relocating loader 11, 1-4
relocflag, 1-2
removable, 5-3, 5-6
rename file, 5-10
repair disk, 5-8
repair file system, 5-7
replace system call, 2-7
reset, 5-5
reset 0 enable 125 4, 6-10
reset char detect, 3-9
reset level, 5-5
reset occurred 117 2, 4-6
rom version, 4-2
root block, 5-1, 5-3, 5-6
root directory, 5-1, 5-6
root program, 5-5
rootdir, 5-3
RTS control, 3-11
runstats 129 8, 7-9

rxcount, 3-12
rxpeek, 3-12
rxpurge, 3-12
rxroom, 3-12
rxtxptr 125 26, 6-12

scan keyboard code, 2-6
SCC clock frequency, 6-13
SCC ISR, 6-12
schedprep 131, 7-2
schedule new process 131, 7-2
schedule not disabled, 7-8
schedule time, 7-10
screen pointer, 6-5
SCSI lockin 125 27, 6-13
self reference, 1-1
semaphore, file system lock, 7-14
send a signal, 7-10
send break, 3-12
send IPC block 129 46, 7-23
sendinterrupt 129 13, 7-11
sendsighup, 3-9
sendsigint, 3-9
serial IO program, 3-11
serial port extra 125 26, 6-12
set_kvec, 2-6
set_ser, 3-1
set_sip, 3-1
set_sop, 3-1
set_stvec, 2-7
set_vsvec, 2-6
set attribute bits, 5-10
setbdlockin 125 27, 6-13
setbeepvec 125 21, 6-12
setbeepvol 125 19, 6-12
setbrclock 125 31, 6-13
setbreak, 3-12
setdtr, 3-11
setenv 129 48, 7-24
setenvbits 129 43, 7-21
seteofchar, 3-8
sethfc, 3-11
sethupmode, 3-10
setibcvec 125 0, 6-9
setmemfault 125 25, 6-12
setmode, 3-11
setpg 129 39, 7-20
setprocumask 129 42, 7-21
setrawmode, 3-9
setresetchar, 3-9
setrts, 3-11
setrxbsize, 3-12
setshnice 129 31, 7-18
setsigexit 129 38, 7-20
setstvec 80, 6-3
settxbsize, 3-12

Tech Reference vi

setuid 125 9, 6-11
setumask 125 7, 6-11
setuserbits, 3-11
setwildcomp 125 13, 6-11
setxoffchar, 3-8
setxonchar, 3-9
shell processes, 7-1
short address, 1-3
short addressing, 1-1
sigblock 129 25, 7-15
sigblocker 129 27, 7-16
sigcatch 129 12, 7-11
sigdown 129 35, 7-19
sigint character, 3-8
signal handler, 7-11
signal handler vector, 7-14
signals, 7-10
sigpg 129 40, 7-21
sigsegv signal 11, 6-12
sigsend 129 11, 7-10
siguid 129 37, 7-19
siguser 129 29, 7-17
simulated interrupt vector, 2-6
sio program, 3-11
size of buffer, 3-12
slash (/), 4-3
sleep 129 4, 7-7
sleep until true 129 28, 7-16
sliceargs 93, 6-1
snooze 129 28, 7-16
sound beep changes, 6-12
special, 5-3, 5-7
special field, 5-6
ssosver, 5-3
ssptr 129 23 interlock process, 7-15
stack check disable, 7-13
stack frame, 2-7
stack usage statistics, 7-9
stacksize, 2-1
stackspace, 2-7
startofday 125 29, 6-13
startup code for MRD, 2-3
stat_bit, 5-1
statistics on memory use, 7-9
status, 3-4, 3-5
statvec, 3-1 - 3-3
str, 6-1
subdirectory, 5-2
suspend sleep 129 4, 7-7
switch pending flag 129 33, 7-18
swpptr 129 33, 7-18
symtablen, 1-2
sys directory, 5-5
syscall vector change 80, 6-3
system call replacement, 2-7
system tracks, 5-5

terminal sequence modify, 3-11
terminate exit2 129 2, 7-6
terminate kill 129 3, 7-7
text, 1-1
textbegin, 1-2
textlen, 1-2
time-date MRD, 6-5
time slice level 129 31, 7-18
time slice nice, 7-10
timer1used 125 32, 6-13
trace 129 14 proctrace, 7-12
transient program, 2-5
transient programs, 2-1
translate escape codes, 3-11
trapno, 6-4
trashassign 125 33, 6-13
trashenvstrings 125 34, 6-14
trashwrupword 125 4, 6-10
tx buffer size, 3-12
txcount, 3-12
txflush, 3-12
txpurge, 3-12
txroom, 3-12

UID 0 access only 117 106, 4-7
umask cmd, 6-11
umask file creation 125 7, 6-11
undelete, 5-1
unlink, 5-1
user ID, 5-1, 6-11
user kill 135 36, 7-19
user kill all processes, 7-15
user signal 135 37, 7-19

vecnum, 6-3
vector, 6-3, 6-4
verbose mode, 5-7
vers, 2-7
version, 3-12
version 2 conversion, 5-6
version number of driver, 3-12
vertical sync interrupt, 2-6
VIA timer 1 125 32, 6-13
video_init 125 17, 6-12
video driver, fast, 6-13
video initialise 125 17, 6-12
video reinitialise, 6-12
videosize, 2-2
volume name, 4-5
volume of beep, 6-12
volume of beep 125 19, 6-12
vramspace, 2-7
vramstart, 2-7

wait 129 9, 7-9
warmboot, 5-9

Tech Reference vii

wcexp, 6-1
whereis, see vector, 6-3
wildcard comparison vector 125 13, 6-11
wildcard expansion, 6-1
write directory, 5-10
write protect, 5-2
write protect device 117 107, 4-7
write system tracks, 5-5

xoff detect, 3-8
xon detect, 3-8
xpath read 125 5, 6-10
xpname 125 5, 6-10

y option in fscheck, 5-8
yy option in fscheck, 5-8

z80lock 127, 6-8
zero buffers, 3-12

Tech Reference viii

Table of Contents

1Relocatable Code Format ... 1-1
Generating .xrel files - genreloc ... 1-3
Loading executable files into memory .. 1-3

Load a program - floadrel ... 1-3
Relocating loader - loadrel .. 1-4

2 Memory Resident Drivers ... 2-1
Using buildmrd.xrel .. 2-1
Memory resident driver conventions .. 2-3
Writing memory resident drivers ... 2-5

Background processing at vertical sync interrupt time 2-6
Background processing initiated by other interrupts .. 2-6
A block driver ... 2-6
Character driver .. 2-6
Keyboard intercept .. 2-6
System call replacement/intercept .. 2-7

The mrdrivers file ... 2-7

3 Character Device Drivers .. 3-1
Character device MRDs ... 3-1

Install input driver - add_ipdvr ... 3-1
Miscellaneous entry point - add_xipdvr ... 3-2
Install output driver - add_opdvr .. 3-3

Character Device Drivers .. 3-4
Vary buffer size for a character device - new_cbuf .. 3-6
Get pointer to character device driver table - get_dvrlist 3-6
The find_driver system call - find_driver ... 3-7
The cdmisc system call - cdmisc .. 3-7

4 Block Device Drivers .. 4-1
Install a device (Version 3) ... 4-1

Install a block device driver - inst_bdvr ... 4-1
 Multiblock I/O (Version 4) .. 4-3

Installing multi-block I/O - inst_bdvr ... 4-3
The multi-block I/O system call - multiblkio ... 4-4

Other system calls ... 4-5
Locate a block device driver - find_bdvr .. 4-5
Call block driver miscellaneous function - bdmisc ... 4-6

5 File Systems .. 5-1
Directory entries ... 5-1
The structure of block devices ... 5-3

The root block ... 5-3
The block usage bitmap .. 5-5
The boot block .. 5-5
The root directory ... 5-6
Formatting media .. 5-6

Utility programs .. 5-6
Initialising block devices .. 5-6
Copying disks .. 5-7
Checking and repairing file systems ... 5-7

Directory Manipulation ... 5-9

i

Manipulate directories - processdir ... 5-9
Check permissions - chkperm ... 5-10
Symbolic links - slink ... 5-11

6 Other Calls .. 6-1
Low Level Calls ... 6-1

Process command strings - sliceargs ... 6-1
Interpret and evaluate arguments - clparse ... 6-3
Alter/install a system call vector - setstvec ... 6-3

Mouse, alias and disk lock calls ... 6-4
Install mouse driver intercept - mousetrap .. 6-4
Alias a command - alias .. 6-7
Arbitrate Z80 use - z80lock .. 6-8

Miscellaneous system alterations - oscontrol ... 6-9

7 Multitasking .. 7-1
Create a communication pipe - pipe ... 7-1
Asynchronous execa - aexeca ... 7-2
Schedule a new process - schedprep ... 7-2
Process management - proccntl ... 7-4

Return current process ID - getpid .. 7-6
Return a process’s parent process ID - getppid .. 7-6
Terminate current process - exit2 ... 7-6
Unconditionally terminate a process - kill .. 7-7
Suspend processing - sleep ... 7-7
Return pointer to process table entry - getproctab .. 7-8
Change current working directory - cwd .. 7-8
Prevent/disable process descheduling - lockin ... 7-8
Enable run statistic display - runstats .. 7-9
Wait for process to exit - wait ... 7-9
Set process time slice - nice .. 7-10
Send a signal - sigsend .. 7-10
Install a signal handler - sigcatch .. 7-11
Send ALT-^C interrupt - sendinterrupt ... 7-11
Put a process into trace mode - proctrace ... 7-12
Read process flags from process table - getprocflags 7-12
Determine if process is interactive - isinteractive ... 7-12
Enable/disable stack checking - nospheck .. 7-13
Install context switch vector - csvec ... 7-13
Pointer to current PID - getpcurpid ... 7-14
Read signal handler vector - readsigvec ... 7-14
File system interlock semaphore - fsbptr .. 7-14
File system PID - fspptr .. 7-15
Process interlock semaphore - ssptr .. 7-15
Kill user of shell - killuser .. 7-15
Block or unblock signals - sigblock .. 7-15
Set an alarm - alarm .. 7-16
Signal blocker - sigblocker ... 7-16
Sleep until true - snooze .. 7-16
Send signal to processes - siguser ... 7-17
Find process’s home shell PID - findhomeshell ... 7-18
Set nice level of processes - setshnice .. 7-18
Return last child PID - lastchild .. 7-18
Switch pending flag - swpptr .. 7-18
Kill a group of processes - killdown ... 7-19

ii

Signal a group of processes - sigdown .. 7-19
Kill a users processes - killuid .. 7-19
Signal a users processes - siguid ... 7-19
Signal process on exits - setsigexit ... 7-20
Set process group - setpg .. 7-20
Signal processes in a process group - sigpg .. 7-21
Kill processes in a group - killpg .. 7-21
Set group file creation mask - setprocumask .. 7-21
Manipulate environment bits - setenvbits ... 7-21
Read environment bits - getenvbits ... 7-23
Convert string to PID - nametopid .. 7-23
Send an IPC block - blocktx ... 7-23
Receive an interprocess block - blockrx ... 7-23
Manipulate environment strings - setenv .. 7-24
Environment string variable - getenv .. 7-25

iii

