
Applix

Utilities

Disk # 1

Applix 1616 Software

UNIX style disk and file utilities
converted or written
by Andrew Morton

Applix 1616 Utilities
Disk One
Disclaimer

None of us claim that these utility programs are good for anything. If you think they are,
great, but that is up to you to decide. If any, or all, of these programs don’t work, that is your
problem, not ours. If you lose a million dollars, or anything else, because one or all of these
programs stuffs up, you are out of pocket the million, not us. If you don’t like this dis-
claimer: tough. We reserve the right to do the absolute minimum provided by law, up to and
including nothing.

In no event will Applix be liable for direct, indirect, special, incidental, or consequential
damages resulting from any defect in the software or its documentation.

This disclaimer has been provided in plain English, in keeping with Applix’s policy of pro-
viding comprehensive, readable information about its products. It is basically the same dis-
claimer all the fancy, expensive overseas software packets provide, but without legal beagles
mangling the English. Special thanks to Dave Horsfall for bringing this disclaimer to my
attention.

Parts of the preliminary version of this manual were based on umpteen different UNIX man-
uals and textbooks.
It was rewritten to correspond somewhat with the actual source code by Eric Lindsay
Editorial and design consultant: Jean Hollis Weber

Comments about this manual or the software it describes should be sent to:

Applix Pty Limited
Lot 1, Kent Street,
Yerrinbool, 2575
N.S.W. Australia
(048) 839 372

Private BBS systems (ringback) on (02) 554 3114 and (02) 540 3595

Programs (where applicable) Copyright 1988, 1989 Andrew Morton and Applix Pty
Limited. All Rights Reserved.
Manual Copyright 1988, 1989 Eric Lindsay & Jean Hollis Weber

ISBN 0 947341 ?? ?

MC68000 is a trademark of Motorola Inc.
UNIX is a trademark of AT&T

Introduction

This manual attempts to describe a collection of disk based utility programs written or con-
verted by Andrew Morton, designer of the Applix 1616 computer system.

A number of these programs are more or less loosely based upon UNIX utilities. This means
that, like many other programs within 1616/OS, they are intended to be used in groups. They
are tools for building more elaborate programs, with the output from one program becoming
the input to another.

The programs can not all be considered complete, polished, commercial products. Many are
simple conversions of Public Domain products, where conversion attempts ended as soon as
they compiled and ran the first time. There may well be horrendous bugs still in them.
Others were written simply to solve some simple problem, and never intended for widespread
use. They are tools, and sometimes rather rough round the edges. If you can’t live with that,
don’t buy them! If you do buy them, don’t complain!

The good side of all this is that C source code is provided (unlike commercial programs). If
you want to alter the way something works, you can do so (provided you have bought the
HiTech C Compiler).

What Applix do undertake to provide for your paltry $29.95 fee is a diskette in Applix
1616/OS Version 3 (or later) format that was readable on at least one Applix 1616 system.
In the event of a dispute about whether it contains what we say it contains, Applix also under-
take to recopy the programs, and demonstrate that the diskette can actually be read on a
properly working Applix 1616 system. If it still doesn’t work on your system, it probably
means you built your system wrong, or didn’t upgrade it to Version 3, and that is your prob-
lem (see the disclaimer at the start of the manual).

The diskette contains approximately 30 compiled or assembled programs in .xrel form,
together with source code for the majority of these programs. The source code is generally
similar to that actually used to generate the .xrel programs.

Applix also provide a printed manual of at least as many pages as there are programs. The
manual was written by reading the source code, and describing what I thought the program
should do. If I couldn’t make any sense of the code, I described what the corresponding
UNIX program should do. In some cases, parts of the manual were rewritten to correspond
with what the program actually ended up doing when I ran it. Special thanks to Philip
Hutchison, Matthew Gardner and Dave Wilson for corrections.

I would be delighted to hear from users with corrections or additional details of how any of
these programs work. Any changes will be incorporated in later versions of this manual.

Introduction Utilities Disk One

addcr - add carriage returns to a file

addcr infile outfile

Description

Reads through the input file looking for newline characters, and adding a carriage
return whenever it finds one. Places the result in the output file.

Used to help convert text files from other computers or editors. See the -a option in
Greyham Stoney’s disk software for automatic conversions from MS-DOS.

For fixing files that have unknown carriage return and line feed problems, run them
through rmcr first (to leave only line feeds), then through addcr (to make up CR-LF
pairs).

Bugs

Does not accept redirection.

Associated files

addcr.c

See also

rmcr , tolower, toupper

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

addcr - add carriage returns to a file Utilities Disk One

ar - archive maintainer

ar [-adprtvx] afile [filename] ...

Description

The archive maintains groups of files combined into a single archive afile . Individual
files are inserted without alteration into the archive file. Maintains the dates files were
added. Handy for keeping track of a group of files with some common purpose, such
as C programs comprising a larger program. Not the same as arc .

The options are a -, followed by one character from the set adprtvx . Afile is the
archive file. The filenames are constituent files in the archive file. The meanings of
the option characters for operations on an archive are:

a Append a file to the end of the archive file.

d Delete the named files from the archive file.

p Print the named files from the archive.

r Replace the named files, or add a new file to the archive, if the replaced file does
not exist. Ar will create afile if it does not already exist.

t Print a table of contents of the archive file. If no names are given, all files in the
archive are described. If names are given, information about only those files
appears.

v Verbose. Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files. When used with t, it gives a
long listing of all information about the files. When used with the p option, the
verbose option causes ar to print the key letter and file name associated with each
file for that operation. For the r operation, ar will show an "a" if it added a new
file, or an "r " if it replaced an existing one.

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter (i.e. delete entries from) the archive file.

Examples

ar -r newlib.a f3 f2 f1 f4

will create a new file (if one does not already exist) in archive format with its constitu-
ents entered in the order shown in the above command line.

Associated files

ar.c

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Michael Huisjes

Conversion to Applix 1616 by Andrew Morton

ar - archive maintainer Utilities Disk One

arc - compress and archive files

arc [-]{ amufdxeplvtc } [biswn] [gpassword] archive [filename ...]

Description

arc archives, compresses and extracts files. Often uses to collect related files into a
single file prior to transmission electronically.

a add files to archive.

m move files to archive.

u update files in archive.

f freshen date of files in archive.

d delete files from archive.

x extract files from archive.

e extract files from archive.

p copy archived files to standard output.

l list files in archive.

v verbose listing of files in archive.

t test archive integrity.

c convert entry to new packing method.

b retain backup copy of archive.

i maintain IBM PC compatible archive.

s suppress compression (store only).

w suppress warning messages.

n suppress notes and comments.

g encrypt decrypt archive entry.

Associated files

? Don’t know where the source is.

Distribution

Applix Utility Disk #2

Author

Ported to 1616 by Andrew Morton.

arc - compress and archive files Utilities Disk One

at - run a task at a specified time

at HHMM [command] or
at MMDDHHMM [command]

Introduction

at is a program which permits you to run a group of one or more 1616/OS commands at a
specified time up to a year hence. at assumes the use of cron , which actually does the work
of starting the at job at the correct time.

What at does is to create a file containing a 1616/OS directory name and a set of 1616/OS
commands in the directory /usr/lib/atjobs . This file’s datestamp is the date and time at
which the at job is to be run. cron regularly runs a program called atrun which looks to see
if any of the files in /usr/lib/atjobs have a datestamp older than the current time. If they have
atrun executes the commands in the file and deletes it.

Because atrun runs jobs at any time after they are due it may be used for reminders. Runn-
ing an at job on a particular date will result in the job being executed at the first possible
time after that date, shortly after cron is started.

To run at you must have a line of the form
; Run ‘at’ jobs every 15 minutes
0 0,15,30,45 * * * atrun /usr/lib/atjobs/at.* or
0 0,15,30,45 * * * atrun -l /usr/lib/atjobs/at.* or
0 0,15,30,45 * * * atrun -l/f0/atlog /usr/lib/atjobs/at.*
in your crontab file. at records the current working directory in the at job file, so atrun can
change there when it runs the job. This means that relative pathnames will work correctly.

Usage of at is used as follows:
at HHMM [command] or
at MMDDHHMM [command]

where HHMM represents the hours and minutes of the time when the command is to be run.
If this is earlier in the day than the current time at assumes that it is to be run tomorrow.
MMDDHHMM represents the month, day, hour and minute of execution. If this represents a
time before midnight the previous day then it is assumed to be next year.

If the ‘command’ is not given at will enter an interactive mode where one or more com-
mands may be typed into the at job. They will be executed synchronously, in order, at the
specified time. If the command to execute is supplied on the command line be careful to
quote any redirections or wildcards. Note that atrun runs under cron , with its settings of
standard input, output and error, so any output from at jobs will come out on cron ’s output,
unless redirected.

The at jobs are recorded in plain text files in /usr/lib/atjobs/at.* and can be read, deleted or
altered.

Usage of atrun

atrun is used as follows:
atrun [-l[logdirectory]] filenames
This program inspects the timestamp on all the passed files and for all those files which are
older than the current time atrun opens them, reads the first line, does a chdir() system call
to the directory whose name is contained in that line, and then reads lines one at a time from
the file, executing them via the exec() system call.

at - run a task at a specified time Utilities Disk One

If the -l flag is given atrun places the output from each ‘at job’ file in a uniquely named file
in the directory /usr/lib/atlog . The output directory may be altered by putting the name
of the desired directory hard up against the -l , with no white space separator. If atrun is run
under 1616/OS V4.1 only the standard output from atrun will be placed in the log file. This
is due to a slight OS bug, which should be fixed under 1616/OS V4.2. The log files contain
some extra information about what command was run and when it ran, etc. Simply typing
these out will tell you what happened and when.

If -l is not given, the commands which atrun reads from the ‘at job’ file will, when
executed, inherit atrun ’s standard input, standard output and standard error. If these are not
redirected in the atrun command entry in the crontab file which started atrun up then they
are inherited from cron itself.

Example at commands

1) To delete all editor files at the next occurrence of 1 AM:

at 0100 > find /h0 "*.bak" | mexec "delete %s" >null: }null:

2) To remind yourself to go to work:
at 0800 "echo ^GGo to work >con:"

3) To remember a birthday:
at 07150000 > echo "It is AKPM’s birthday: send cheque or money order"
>con:
Note that this at job will be executed the first time you run cron after 00:00 on the next
occurrence of July 15.

Andrew Morton Applix pty limited 2nd December 1989

at - run a task at a specified time Utilities Disk One

cal - print calendar

cal [month] year

Description

cal prints a calendar for the specified year. If a month is also specified, a calendar just
for that month is printed. Year can be between 1 and 9999. The month is a number
between 1 and 12. The calendar produced is that for England and her colonies (like the
USA and Australia). Arguments are in decimal numbers, unlike 1616/OS.

If an single argument of less than 12 is given, it is considered a month.

If given two arguments, but in the wrong order (year before month) it usually gets them
right. This version is smarter than your average UNIX version.

Examples

Try September 1752. (Type cal 9 1752) In that month, 11 days were skipped to
make up for leap year adjustments not made previously (19 days hath September?)

Bugs

The year is always considered to start in January, even though this is historically naive.
Beware that ‘‘cal 89’’ refers to the early Christian era, not the 20th century (it is easy to
miss meetings this way!)

Arguments are considered decimal numbers, not hexadecimal, unlike 1616/OS shell.
Do not use . before numbers.

If given a single argument of less than 12, a month is assumed, however this version
then uses the calendar for the year 10, which isn’t all that much use.

Needs to learn how to read the Applix 1616 system date, and use the current month and
year.

Does not understand month names or abbreviations, which is rather naive.

Associated files

cal.c

See also

date, swget, swset

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Martin Minow

Conversion to Applix 1616 by Andrew Morton

cal - print calendar Utilities Disk One

cmp - compare two files

cmp [-ls] file1 file2

Description

The two files are compared. (If file1 is -, the standard input is used.) Under default
options, cmp makes no comment if the files are the same; if they differ, it announces
the byte and line number at which the difference occurred. If one file is an initial
subsequence of the other, that fact is noted. Use it for writing quick and dirty data-
bases.

-l Print the byte number (decimal) and the differing bytes (octal) for each difference
(byte numbering begins at 1 rather than 0).

-s Print nothing for differing files; return codes only.

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible
or missing argument. Well, maybe in the UNIX version!

Examples

Bugs

Associated files

cmp.c

See also

comm, diff .

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Paul Polderman and Michael Huisjes

Conversion to Applix 1616 by Andrew Morton

cmp - compare two files Utilities Disk One

comm - lines common to two files

comm [- [123]] file1 file2

Description

Comm reads file1 and file2 , which should be ordered in ASCII collating sequence
(see sort), and produces a three column output: lines only in file1 ; lines only in
file2 ; and lines in both files. The file name - means the standard input. This is also
of use in writing quick and dirty databases.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints
only the lines common to the two files; comm -1 prints only lines in the first file but
not in the second; comm -123 is a no-op.

Examples

Bugs

Associated files

comm.c

See also

cmp, diff, sort, uniq.

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Martin C Atkins

Conversion to Applix 1616 by Andrew Morton

comm - lines common to two files Utilities Disk One

cron - run regular background tasks

cron [-f crontabfile] [-s sleeptime] [-r rereadtime] [-v] [-d] [-e[dev-
name]]

Introduction

cron is a program which is designed to run as a daemon under 1616/OS. It runs other pro-
grams at specified times and dates. cron reads a plain text file to determine what commands
the user wishes to have executed and when they are to be executed.

Installation

Typically cron is started up by a command in your autoexec file at boot time. Of course
cron will stop if you reset the 1616 with or if the 1616 crashes on an exception. A
modified version of the 1616 boot block program has been supplied. This version attempts to
run a file called autoexec1 at level 1 and level 2 resets. This program can then restart cron .
Copying a boot block, autoexec1.shell and cron.xrel to the RAM disk can speed up the
reboot process, as the computer will boot from the RAM disk. This will ensure that cron is
always available after a reset on a floppy drive system. The cron tables in /usr/lib/cron-
tab must also be available.

cron ’s standard output and standard error

When cron runs a program that program inherits its standard input, output and error devices
from cron . To prevent cron programs from scribbling on the screen at inopportune moments
it is best to redirect cron ’s standard output and standard error to the NULL: character device
driver.

Invoking cron

cron [-f crontabfile] [-s sleeptime] [-r rereadtime] [-v] [-d] [-e[dev-
name]]

this program must be started asynchronously.

-f crontabfile

Specifies the file which contains the tables which tell cron what to run and when.

If you use the default name of /usr/lib/crontab you will have to set up assign s which
make /usr/lib a valid directory.

-s sleeptime

Specifies the number of seconds for which cron sleeps between examining its command
database and possibly the crontab file. Decreasing the sleep time will give higher resolution
but will consume more CPU time.

-r rereadtime

cron periodically polls the crontab file to see if it has been altered. If it has, it is rescanned.
This polling normally occurs every two minutes (120 seconds). This option allows the alter-
ation of the reread period. It is specified in seconds. Sending cron a 1616/OS signal number
100 will also cause it to reread the crontab file. Type syscall .129 .11 cron .100 0 -v
Verbose mode.

Don’t use. -d Debug mode.

Don’t use. -e Echo a little startup message onto standard output. Not much use if cron ’s
standard output is redirected to NULL:

-e devname

Alt Ctrl R

cron - run regular background tasks Utilities Disk One

Echo the startup message to the file/device ‘devname’. For example,
cron -eCON: >null: }null: <null: &
cron has a minimum resolution of 15 seconds. The most frequently that a program can be
run is once every 15 seconds. The most accurately that its run time can be specified is within
15 seconds.

The crontab file format

The crontab file consists of lines which tell cron what programs to run and when to run them.
Comment lines are permitted; they must start with a semicolon. Blank lines and any syntacti-
cally incorrect lines are ignored.

The line format is as follows:

Second Minute Hour Day Month Command
where the ‘Second’ to ‘Month’ fields represent a range of different times at which the com-
mand is to be run. The numeric fields consist of a single decimal number, numbers separated
by commas, ranges of numbers separated by hyphens, or combinations of these. The fields
are separated by spaces or tabs.

Examples: 10 12,13 10,1-5 7-9 1,2-7,4,4-9

An asterisk ‘*’ can be used to specify all possible values of a field. The ‘Day’ field may also
be expressed as ‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’, ‘Sat’ or ‘Sun’. It does not matter whether
the days of week are entered in upper or lower case.

When cron detects that the current second, minute, hour, day and month all correspond to
values which have been given in the crontab entry the string ‘Command’ has an ‘&’ pasted
onto the back of it to make it run asynchronously with respect to cron and it is passed onto
the exec system call for execution.

If the ‘Command’ field has multiple commands separated by ‘!’ characters then it should be
surrounded by double quotes. Otherwise the program which is run could block cron .

Consider:
; Run modem program at midnight, delete old file
0 0 0 * * * modemthing < sa: ! cleanup
at midnight cron will exec the following string:
modemthing < sa: ! cleanup &
If ‘modemthing’ does not terminate cron will not rerun. The solution is to modify the cron-
tab entry as follows:
; Run modem program at midnight, delete old file
0 0 0 * * * "modemthing < sa: ! cleanup"
so cron execs
"modemthing < sa: ! cleanup" &
which will immediately return control to cron . Of course the time specification fields must
be within range for minutes, hours in the day, etc. If you put in a bad entry, such as 50 for
the hours then the whole entry is ignored. Setting the verbose or debug flags when you start
up cron will result in diagnostics being displayed for bad crontab entries. The seconds field
is rounded to the lowest multiple of 15 seconds, so the seconds 0 through to 14 are are all
equivalent, as are the seconds 15 through to 29, etc.

Some example crontab entries:
; Run every ten minutes
; sec min hour day month command
0 0,10,20,30,40,50 * * * date >> /h0/runlog

; Run at 8:00 am every day
; sec min hour day month command
0 0 8 * * echo Get up and go to work >con:

cron - run regular background tasks Utilities Disk One

; Wish me happy birthday
; sec min hour day month command
0 0 12 15 7 echo Happy Birthday >con:

; Check the Hard disk is OK at midday
; sec min hour day month command
0 0 12 * * fscheck /h0 >/f0/fschecklog

; Beep once every 15 seconds for the first 3 minutes of
; each hour
; sec min hour day month command
0-59 0-2 * * * echo -n ^G >con:

; Remind you to buy the Herald
; sec min hour day month command
0 0 12 Mon * echo "Buy the paper" >con:

; Blow the machine away every hour, on the hour,
; but only on Fridays and the 13’th of the month
; sec min hour day month command
0 0 * 13,fri * syscall .101

It is not recommended that you put the last entry into your own crontab file. Put it out as
shareware.
; Print the date every thirty seconds
0,30 0-59 0-23 0-30 0-11 date

; Really useless
0-59 * * * * echo "Hello, world"

‘command’ must be suitable for asynchronous exec. cron sticks an ‘&’ on the end and execs
it. This means that a command like

fred ! bill

will be execed as

fred ! bill &

so fred will run synchronously and block cron , which seems dumb. The above command
should be

"fred ! bill"

so cron execs

"fred ! bill" &

which runs asynchronously with respect to cron .

Andrew Morton Applix pty limited 2nd December 1989

cron - run regular background tasks Utilities Disk One

dd - convert, reblock, translate, and copy a (tape) file

dd [option=value] ...

Description

Dd copies the specified input file to the specified output with possible conversions.
The standard input and output are used by default in the UNIX version. In some sys-
tems, the input and output block size may be specified to take advantage of raw physi-
cal I/O.

Well, I’ve only used dd to convert lower case files to upper case, and vice versa (and
Andrew wrote assembler utilities to do that!). As soon as I work out what everything
does, I’ll write it up. Meanwhile, here are some possible options.

ibs=n input block size n bytes (default 512)

obs=n output block size n bytes (default 512)

bs=n set both input and output block size, superseding ibs= and obs=.

if= file input file name

of=file output file name

skip=n skip n input blocks before starting copy

seek=n seek n blocks from beginning of output file before copying

count=n copy only n input blocks

files= unknown option

length= unknown option, block length probably

conv=lcase map alphabetics to lower case

conv=ucase map alphabetics to upper case

conv=swab swap every pair of bytes

conv=noerror do not stop processing on an error

conv=sync pad every input block to ibs

Where sizes are specified, a number of bytes is expected. A number may end with k, b
or w to specify multiplication by 1024, 512, or 2, respectively; a pair of numbers may
be separated by x to indicate a product.

After completion, dd should report the number of whole and partial input and output
blocks.

Examples

Bugs

Associated files

dd.c

See also

tr

dd - convert, reblock, translate, and copy a (tape) file Utilities Disk One

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Conversion to Applix 1616 by Andrew Morton

dd - convert, reblock, translate, and copy a (tape) file Utilities Disk One

df - dump contents of a disk file

df filename [-nnnnn] [-onnnn]

Description

Reads a specified file from disk, and displays the contents in hexadecimal and ACSII,
together with the address within the file. Lazy variation on using mload and mdb.

-nnnnn number of bytes to read from file, in hexadecimal

-onnnn offset from start of file, in hexadecimal bytes

Examples

Bugs

Only accepts a single filename, so be careful about how you use wildcards.

Associated files

df.c

See also

mdb and other monitor commands

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

df - dump contents of a disk file Utilities Disk One

diff - differential file comparator

diff file1 file2

Description

Diff tells which lines differ in two files.

Except in rare circumstances, diff finds a smallest sufficient set of file differences.
That is, it is relatively smart about finding differences.

Examples

Bugs

Runs out of memory if there are too many differences. Truncates (ignores) input after
128 characters in long lines.

Associated files

diff.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Erik Baalbergen, alterations by BDE.

Conversion to Applix 1616 by Andrew Morton

diff - differential file comparator Utilities Disk One

dis - disassembler for 68000 code

dis start address count
dis filename.exec
dis filename.xrel

Description

Disassembles memory starting at an address and continuing for count. Will disas-
semble a named file (provided the file ends with an .exec or .xrel extension.) Knows
about Applix1616 syscalls, and displays an appropriate string when they are
encountered.

Examples

Bugs

Associated files

dis.c, mdbdis.c, htoc.c, main.c, sysc.c

See also

Distribution

Applix 1616 Utility Disk #2 /disassembler/

Author

Minix disassembler for the debugger, by Bruce D Szablak.
Conversion to Applix 1616 by Andrew Morton

dis - disassembler for 68000 code Utilities Disk One

eroff - text justifier and formatter

eroff [+00] [-00] [-s] [-h] [files]

Description

A version of roff , extended with printer additions by Craig Mills. Eroff formats text
contained in files (standard input by default) for printing on typewriter-like devices and
line printers. The text is interspersed with lines of format control information, while
the output is a printed, paginated document in a user-designated style. Device indepen-
dent printing is a truly great idea, provided your particular printer is supported ...
mostly, it isn’t. But you have the source code, so you can change that! Craig’s
additions provide subscript, superscript, italics, underline, emphasised print, enlarged
print, and NLQ. Very powerful, but not precisely friendly.

An argument consisting of a minus (-) is taken to be a file name corresponding to the
standard input. The options, which may appear in any order, but must appear before
the files, are:

+ n Starting line number.

- n End line number.

-h Insert tabs to replace spaces wherever possible.

-s n Stop every n pages. Roff will halt after every n pages (default n=1) to allow
paper loading or changing, and will resume upon receipt of a line-feed or new-
line. When roff halts between pages, an ASCII BELL is sent to the terminal.

Roff uses a large number of two character macro commands, preceded by a . within its
text files to control formatting. An n indicates a number is required. A t indicates text
is to be entered. A c indicates a single character is to be entered. The commands prob-
ably include:

.ad Adjust output lines.

.ar Arabic page numbers (default).

.bl n Blank line in text, paragraph indicator. Insert n blank lines.

.bp +n Break page, begin new page, number it n.

.br Break, stop filling current line. Use between paragraphs.

.cc c Set control character to c, default is . .

.ce n Center following n input text lines.

.ch Prompt for a printer DIP switch change from normal (0) to IBM (1).

.de xx Define or redefine macro xx, end at line beginning .. .

.ds Double space, same as .ls 2.

.ec c Set escape character to c Default is \

.ef t Even footer becomes t.

.eh t Even header becomes t.

.eo Turn escape mechanism on or off.

.fi Fill output lines, right justify margin. Default is on.

.fo t Footer title, default none.

.hc c Hyphenation indicator character c Initially usually none.

eroff - text justifier and formatter Utilities Disk One

.he t Header title, default none.

.hx Title lines are suppressed, default 1.

.hy n Hyphenate. If n is 1, hyphenate, if n is 0, don’t.

.ig .. Ignore input until you encounter ..

.in n Indent n spaces, normally n is zero

.ix n Next indent size, same as .in, but without break

.li n Literal. Treat next n lines as text.

.ll n Line length, initially 6.5 inches, 65 characters, including indent.

.ls n Output n-1 vertical spaces after each line, default 1.

.m1 n Put n blank lines between top of page and header title.

.m2 n Put n blank lines between header title and start of text.

.m3 n Put n blank lines between end of text and footer.

.m4 n Put n blank lines between footer and bottom of page.

.n1 Add 5 to page offset, number lines in margin from 1 on each page.

.n2 n Add 5 to page offset, number lines on page starting ffrom n.

.na No adjusting of output line, equivalent of .ad =0.

.ne n Begin new page, if n lines won’t fit on present page.

.nf No filling or adjusting of output lines.

.ni +n Line numbers are indented n.

.nn +n Number next n lines, initially 0.

.nx filename Input from next file.

.of t Odd footer becomes t.

.oh t Odd header becomes t.

.pa +n Same as .bp, start new page numbered n.

.pl n Page length, defaults to 11 inches usually, or 66 lines.

.po n Page offset. Preceed lines by n spaces.

.rm n Right margin setting, default 60.

.ro Roman numerals on page numbers.

.sk n Skip n blank pages.

.sp n Space down n lines (except at top of page), default 1.

.ss Single space, same as .ls 1.

.ta Nt Tab settings, left, unless t=R (Right), or t=C (Center). 8 initially (positions 8,
17, 25 ...).

.tc c Tab replacement character, initially a space.

.ti n Temporary indent of n, for next line.

.tl t Print title t.

.tr abcd ... Translate a to b, etc., on output.

.ul n Underline letters and numbers in next n input lines.

eroff - text justifier and formatter Utilities Disk One

\-1 Set continuous underline mode.

_1 Set non-continuous underline mode.

\I1 Set italic mode.

\E1 Set emphasised mode.

\P1 Set superscript mode.

\B1 Set subscript mode.

\W1 Set enlarged mode.

\Q1 Set letter quality mode.

\ (a space character) Make an unpaddable space sized character. The gap will not
be filled with extra spaces, nor broken over a line.

\ 0 Cancel any of the above modes by repeating it, but with a 0 in place of the 1.

Examples

Bugs

Associated files

eroff.c, eroff.doc, eroff.obj, eroff.xrel, expand.as, expand.obj,
makefile, runoff.s

See also

cat, cio, more, pr , roff , runoff , dde

Distribution

Applix 1616 Utility Disk #2 /eroff

Author

G L Sicherman, with fixes by Tim Maroney, Dave Tutelman. Refer to Kernighan &
Plauger book Software Tools for a description.

Conversion to Applix 1616 by Andrew Morton
Printer additions from Craig Mills

eroff - text justifier and formatter Utilities Disk One

exp - evaluate arguments as an expression

exp arguments

Description

This is usually called expr but that name has been used by 1616/OS. The arguments
are taken as an expression. After evaluation, the result is written on the standard out-
put. Terms of the expression must be separated by blanks. Characters special to the
shell must be escaped using " . Note that 0 is returned to indicate a zero value, rather
than the null string. Strings containing blanks or other special characters should be
quoted.

The operators and keywords are listed below. Characters that need to be escaped must
be surrounded by " .

exp | exp
OR returns the first exp if it is neither null nor 0, otherwise returns the second
exp.

exp & expr
AND returns the first exp if neither exp is null or 0, otherwise returns 0.

exp =, >, >=, <, <=, != exp
returns the result of an integer comparison if both arguments are integers.

()
Parentheses permit grouping within expressions.

exp +, - exp
addition or subtraction of integer-valued arguments.

exp *, /, % exp
multiplication, division, or remainder of the integer-valued arguments.

Examples

Bugs

Only 6 levels of parentheses are provided. It is very easy to forget to escape characters
with " .

Associated files

exp.c

See also

expr

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Erik Baalbergen

Conversion to Applix 1616 by Andrew Morton

exp - evaluate arguments as an expression Utilities Disk One

find - find a named file on disk

find dirspec filespec

Description

Find locates files, and reports which directory they are in. Drive is the default drive,
but can be specified within the dirspec . Do not end the dirspec with a /. Wildcards
are expanded correctly, however you must enclose then in double quotes (") to prevent
them being expanded by the operating system. Output can be redirected with > for later
perusal.

Examples

find /f0 filename

find /f1/bin "*.xrel"

Bugs

Specifying a root directory can be confusing. Find /h0/ filename is incorrect.

Associated files

find.c

See also

tree, ftree

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

find - find a named file on disk Utilities Disk One

fscopy - copy a directory, and all subdirectories

fscopy sourcedir destdir

Description

Fscopy copies a directory (or a whole disk), and all subdirectories and files, to another
directory or disk. Provides messages as to the directory being scanned.

You need to be careful to provide a directory name at the destination, or all subdirec-
tories will end up in the root directory.

Examples

Bugs

Takes forever to copy large directories, so use it only to copy complex directory struc-
tures. Do not use it to copy a whole disk (it works, but is too slow). If a directory set
up for more than 64 files is fscopied , the new directory may default to 64 files. This
may cause serious disk map problems.

Associated files

fscopy.c

See also

copy, diskcopy, fastcopy, tree

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

fscopy - copy a directory, and all subdirectories Utilities Disk One

ftolower - convert input to lower case

ftolower < infile > outfile

Description

Converts any upper case characters in the input into lower case. Use < and > redirec-
tions.

Examples

Bugs

Associated files

ftolower.s

See also

addcr, dd, ftoupper, rmcr , tr

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

ftolower - convert input to lower case Utilities Disk One

ftoupper - convert input to upper case

ftoupper < infile > outfile

Description

ftoupper converts any lower case alphabetical characters to upper case. Use < and >
redirections.

Examples

Bugs

Associated files

ftolower.s

See also

addcr, dd, ftolower, rmcr , tr

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

ftoupper - convert input to upper case Utilities Disk One

gensrec - output in S-Record form

gensrec infile > output

Description

Displays a specified input file in Motorola S Record format. Redirect the output as
desired using >. You can waste vast amounts of time by redirecting the output into the
1616’s inbuilt srec command.

Examples

Bugs

Associated files

gensrec.c

See also

sd

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

gensrec - output in S-Record form Utilities Disk One

gp - fast search a file for a simple pattern

gp pattern file

Description

gp searches the input file for lines matching a pattern. Normally, each line found is
copied to the standard output.

Examples
gp aeiou f0/dir1/*.doc

This finds all lines containing aeiou.

Associated files

gp.c There may not be an executable kicking round.

See also

find , grep

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

gp - fast search a file for a simple pattern Utilities Disk One

grep - search a file for a pattern

grep [-cfinv] pattern [file ...]

Description

grep searches the input files (standard input is the default, so it also works as a filter)
for lines matching a pattern. Normally, each line found is copied to the standard out-
put. Grep patterns are limited "regular expressions" in the style of UNIX ed.

I’ll eventually add a detailed description of how to form a regular expression. Mean-
while, you can use grep to search for strings (just enclose them in quotes ") without
much effort, but it is actually far more powerful than any usual word processor search
function. Use it also for quick and dirty databases.

Here are the command line options, used to include or exclude specific lines of a file in
the output.

-c Only a count of matching lines is printed.

-f File switch. Normally, file names are only printed if more than one file is
searched. Switch makes file name print if there is one file only.

-i Ignore upper/lower case distinction during comparisons (normally case sensitive).

-n Each line is preceded by its relative line number in the file.

-v All lines except those matching are printed.

Care should be taken when using the characters $, *, ^, |, etc., in the expression of a
pattern, because they are also meaningful to the shell. It is safest to enclose the entire
pattern argument in quotes. Patterns must be quoted if they contain spaces. Wildcards
and pathnames are allowed in the file specification.

Within a regular expression, you can ‘anchor’ the search pattern to the start of a line
using ̂ , or the end of a line using $. As well as matching any string of characters, you
can look for an arbitrary number of occurences of a character by using * or +. You
accept any arbitrary character by using . to stand for any number of characters.

By using the [] surrounding characters, you can search for any of the bracketed char-
acters at that position. Including ^ as the first character within the bracket means to
exclude the other characters within it. Pattern matching understands ASCII sequence,
so you can group characters using -, so A-N means the range of characters from A up to
N.

Characters that are available for use in forming regular expressions include:

* Zero or more occurrences of the previous character.

+ One or more occurrences of the previous character.

- Optionally match previous character (say what?)

\ Escapes any special character.

^ Starts the pattern at the beginning of a new line.

$ Indicates the end of a line.

. Matches any character except end of line.

:a alphabetical characters

:d digits

:n non alpha characters

grep - search a file for a pattern Utilities Disk One

‘ : ’ whitespace characters, including tabs (this is a colon followed by a space)

[] Matches a class of characters.
Matches any character in a set. Ranges such as [a-z] or [1-9] are allowed. Thus
[aeiou] matches any vowel. ^ as the first character in a class means match any-
thing except what is in the class, so [^aeiou] would match any consonant.

Examples
grep -fi "[aeiou]+: " f0/dir1/*.doc f1/tutor/*.text

This finds all vowels that are followed by a space in the two files named. More prosaic
uses include simply searching files for a given string, as in grep "string" file1
file2 .

Associated files

grep.c

See also

find , gp

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

DECUS C Tools, modified by Chuck Allison

Conversion to Applix 1616 by Andrew Morton

grep - search a file for a pattern Utilities Disk One

hdbackup - backup a hard disk to floppies

hdbackup /hdrive /fdrive

Description

Hard disk backup utility, intended to output to 800k floppies only. Reports source and
destination, buffer size, blocks used, and number of floppies required. Internally
numbers the floppies that it uses (so label them correctly!) Prompts for new floppies as
required.

Examples

Bugs

On disk error produces Retry, Ignore, Abort messages (did you really have to imi-
tate MS-DOS, Andrew?) Only knows about 800k floppies, so don’t try backing one
hard disk to another!

Associated files

hdbackup.c

See also

copy, hdrestore

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

hdbackup - backup a hard disk to floppies Utilities Disk One

hdrestore - restore contents of a hard disk

hdrestore /sourcedrive /destdrive

Description

Restores a hard disk that has been saved on floppies using hdbackup . Warns that this
will destroy the contents of the hard disk (so get the partition right!), and prompts for
next floppy (so give it the disks in the correct order!)

Examples

Bugs

Associated files

hdrestore.c

See also

copy, hdbackup

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

hdrestore - restore contents of a hard disk Utilities Disk One

head - display top of file

head [-n] file1 [file2 ...]

Description

Display the first n lines in a file or group of files. The default is 10 lines. Used to
quickly survey the contents of files.

-n Number of lines to be displayed.

Examples

Bugs

Associated files

head.c

See also

tail

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Chuck Allison

Converted to Applix 1616 by Andrew Morton

head - display top of file Utilities Disk One

load4000 - convert .xrel to .exec

load4000 filename

Description

load4000 filename loads a named .xrel file into memory at $4000. Use the inbuilt
msave command to write it back out as an .exec file.

Examples

Bugs

Associated files

load4000.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

load4000 - convert .xrel to .exec Utilities Disk One

make - maintain update and regenerate groups of programs

make [-f makefile] [-dinpqrst] [macro=val] [target(s)] [names]

Description

Make automates the updating of repeated compilations, where only some modules of a
large program are altered. It is not required when a C program consists of only a single
source code file.

In a large C program, consisting of several source code files, header files, and libraries,
modifying any one of these means you will have to recompile. To recompile all mod-
ules, and relink everything to produce a new executable file, is tedious and time-con-
suming. Make allows you to recompile only the changed files, and those files that
depend upon the chnged file contents, and relink these new object modules with those
from a previous link.

Make takes a file of source-code dependencies (called the makefile), and automatically
performs all necessary compiles and links, to create the final target file, the executable
program. It compares the time and date stamp on files to determine which files are
newly altered (you can force inclusion of a file by using touch to update its time and
date stamp). Make uses the details in the makefile (which the author of the program
writes initially) to select the files which are dependent upon newly altered files. You
will find working makefiles in some of the Applix 1616 shareware disks (look at the
makefile for make, for instance). Makefiles often contain specifications for the
libraries to be used, compiler directives, clean up operations and so on. Make itself also
includes internal rules to assist in working out dependencies, and these rules are always
overridden by the contents of a makefile .

Typically, the makefile lists a target files, and then lists the files upon which it
depends. It typically also includes a list of actions to be taken if the target file is to be
remade.

The following is a brief description of all options and some special names. Options can
occur in any order.

-d debug output to go to stderr. Print out detailed information on files and times
examined. (This is intended for debugging the make command itself.)

-f makefile Description file name. Makefile is assumed to be the name of a descrip-
tion file. A file name of - denotes the standard input. The contents of makefile
override the built-in rules, if they are present. Note that the space between -f and
makefile must be present.

-i Ignore error codes returned by invoked commands. This mode is also entered if
the fake target name .IGNORE appears in the description file.

-n No execute mode. Print commands, but do not execute them. Even lines beginn-
ing with an @ are printed.

-q Question. The make command returns a zero or non-zero status code depending
on whether the target file is or is not up-to-date.

-p Print out the complete set of macro definitions and target descriptions.

-r Do not use the built-in rules.

-s Silent mode. Do not print command lines before executing. This mode is also
entered if the fake target name .SILENT appears in the description file.

-t Touch the target files (causing them to be up-to-date) rather than issue the usual
commands.

make - maintain update and regenerate groups of programs Utilities Disk One

The "built-in" dependency targets are:

.PRECIOUS

Dependents of this target will not be removed when QUIT or INTERRUPT are hit.

.SILENT

Same effect as the -s option.

.IGNORE

Same effect as the -i option.

Make executes commands in makefile to update one or more target names. Name is
typically a program. If no -f option is present, makefile , and s.makefile are tried in
order. If makefile is -, the standard input is taken. More than one -f makefile argu-
ment pair may appear.

Make updates a target only if it depends on files that are newer than the target. All
prerequisite files of a target are added recursively to the list of targets. Missing files are
deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies. The first line of an
entry is a blank-separated, non-null list of targets, followed by a colon (:), followed by
a (possibly null) list of prerequisite files or dependencies. Text following a ; and all
following lines that begin with a tab (spaces are not an acceptable substitute, although
they probably should be) are shell commands to be executed to update the target. The
first line that does not begin with a tab or # begins a new dependency or macro defini-
tion. Shell commands may be continued across lines with the <backslash><new-line>
sequence. Everything printed by make (except the initial tab) is passed directly to the
shell as is.

Sharp (#) and new-line surround comments before the rules.

The following makefile says that pgm depends on two files a.o and b.o , and that they
in turn depend on their corresponding source files (a.c and b.c) and a common file
incl.h :
pgm: a.o b.o

cc a.o b.o -o pgm
a.o: incl.h a.c

cc -c a.c
b.o: incl.h b.c

cc -c b.c

Command lines are executed one at a time, each by its own shell. The first one or two
characters in a command can be the following: -, @, -@, or @-. If @ is present, print-
ing of the command is suppressed. If - is present, make ignores an error. A line is
printed when it is executed unless the -s option is present, or the entry .SILENT: is in
makefile, or unless the initial character sequence contains a @.

The -n option specifies printing without execution; however, if the command line has
the string $(MAKE) in it, the line is always executed. Note that this feature does not
work if MAKE is enclosed in braces, as in ${MAKE}. The -t (touch) option updates
the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is pres-
ent, or the entry .IGNORE: appears in makefile, or the initial character sequence of the
command contains -. the error is ignored.

INTERRUPT and QUIT cause the target to be deleted unless the target depends on the
special name .PRECIOUS.

Macros

make - maintain update and regenerate groups of programs Utilities Disk One

Entries of the form string1 - string2 are macro definitions. String2 is defined as all
characters up to a comment character or an unescaped new-line. Subsequent appear-
ances of $(string1[:subst1= [subst2]]) are replaced by string2. The parentheses are
optional if a single character macro name is used and there is no substitute sequence.
The optional :subst1=subst2 is a substitute sequence. If it is specified, all non-over-
lapping occurrences of subst1 in the named macro are replaced by subst2. Strings (for
the purposes of this type of substitution) are delimited by blanks, tabs, new-line
characters, and beginnings of lines.

Internal Macros

There are four internally maintained macros that are useful for writing rules for build-
ing targets.

$* The macro $* stands for the file name part of the current dependent with the suf-
fix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated
only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is
the module that is out-of-date with respect to the target, i.e., the ‘‘manufactured’’
dependent file name. Thus, in the .c.o rule, the $< macro would evaluate to the .c
file. An example for making optimized .o files from .c files is:

.c.o:
cc -c -O $*.c

or:
.c.o:

cc -c -O $<

$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It
is the list of prerequisites that are out of date with respect to the target; essen-
tially, those modules that must be rebuilt.

Suffixes

Certain names (for instance, those ending with .o) have inferable prerequisites such as
.c, .s, etc. If no update commands for such a file appear in makefile , and if an infer-
able prerequisite exists, that prerequisite is compiled to make the target. In this case,
make has inference rules that allow building files from other files by examining the
suffixes and determining an appropriate inference rule to use. The current default infer-
ence rules are:

This is because make has a set of internal rules for building files. The user may add
rules to this list by simply putting them in the makefile .

The inference of prerequisites can be controlled. The rule to create a file with suffix .o
from a file with suffix .c is specified as an entry with .c .o: as the target and no depend-
ents. Shell commands associated with the target define the rule for making a .o file
from a .c file. Any target that has no slashes in it and starts with a dot is identified as a
rule and not a true target.

WARNINGS
Be wary of any file (such as an include file) whose access, modification, and last
change times cannot be altered by the make-ing process. For example, if a program
depends on an include file that in turn depends on another include file, and if one or
both of these files are out-of-date, make will try to update these files each time it is run,
thus unnecessarily re-make-ing up-to-date files dependent on the include file. The sol-
ution is to manually update these files with the touch command before running make.

make - maintain update and regenerate groups of programs Utilities Disk One

(Note that it is generally a bad idea to include the touch command in your makefile ,
because it can cause make to update a program that otherwise did not need to be
updated.)

Check rules.c to find changes to defaults. For example, the assembler AS is now
as68k , ASFLAGS is -q , CC is now relcc , and so on, as required for use with Applix
1616 modified versions of HiTech C.

Examples

Bugs

Some commands return non-zero status inappropriately; use -i to overcome the diffi-
culty.

File names with the characters - : @ will not work.

Make will not properly expand a macro within another macro when string substitution
is involved.

Associated files

00readme, 00revhst.txt, check.c, check.obj, errs, h.h, input.c,
input.obj, macro.c, macro.obj, main.c, main.obj, make.c, make.help,
make.obj, make.xrel, makefile, reader.c, reader.obj, rules.c,
rules.obj, system.c, vaxvms.c

See also

relcc, easy_write

Distribution

Applix 1616 Utility Disk #2 /make

Author

Conversion to Applix 1616 by Andrew Morton

make - maintain update and regenerate groups of programs Utilities Disk One

mexec - multiple exec

mexec [-v] printf_control_string [args]

Description

mexec [-v] printf_control_string [args] executes ONE 1616/OS command
ONCE upon each of its arguments. If the -v flag is given, mexec echos the commands
it is about to exec before doing it.

Examples

For example, mexec "delete %s" * is a complicated way of deleting every file in the
current directory. In this, mexec takes every argument, replaces every occurrence of %s
in the command string with the argument, and execs the result.

Another example, mexec -v "rename %s %s.zz" *.s adds a .zz to the end of every
.s file in the current directory.

A more complicated example, mexec "rmcr %s ! addcr %s ! edit %s" *.c , will
go through every .c file in the directory, run them through rmcr and addcr before edit-
ing them.

You could use mexec "edit %s" file1 file2 file3 *.doc to sequentially edit a
bunch of files.

The mexec program is designed so that if NO arguments are given after the printf con-
trol string, the arguments are read from standard input until it encounters an end-of-file.
This means that the output from the find.xrel program can be directed into the input
of mexec to provide it with its list of filenames. This may be done using pipe or by
going through a temporary file. For example

cd /f0
find . "*.bak" | mexec -v "delete" %s

will delete all the editor backup files from all directories in /F0 . The same effect can
be obtained via temporary files, as below.

cd /f0
find . "*.bak" > /rd/fred
mexec - v "delete %s" < /rd/fred
delete /rd/fred

Bugs

Associated files

mexec.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

mexec - multiple exec Utilities Disk One

more - formats text files for viewing

more [files ...]

Description

More is a filter which allows examination of continuous text, one screenful at a time,
on a display. It knows about wildcards and pathnames. It is retained in UNIX for back-
ward compatibility (stuff like pg or less are used instead). As with all filters, you can
feed it from standard input, and get results from standard output, rather than using
filenames.

It pauses after each screenful, printing -More- at the bottom of the screen. If the user
then types a carriage return, one more line is displayed. If the user hits a space, or
almost any other character, another screenful is displayed. Use it instead of type or
edit for reading a file. Other characters used interactively include:

n Next file is brought in for viewing.

N Next file is brought in for viewing.

Q Exit from more.

q exit from more (same as Q).

Display one more line.

Examples

A sample usage of more (in UNIX) in previewing roff output would be

roff -s +2 doc.n | more

Bugs

When first invoked, the first line of the file is lost off the top of the display.

More does not scroll backwards.

Associated files

more.c

See also

cat, cio, pr, roff , more.s (better version from Matthew Gardner)

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Chuck Allison

Conversion to Applix 1616 by Andrew Morton

CR

more - formats text files for viewing Utilities Disk One

mrdstat - reports on mrdrivers in memory

mrdstat

Description

Dumps out information on the names and locations of any memory resident drivers
(MRDs) loaded by the mrdrivers on the disk from which you booted.

Examples

Bugs

Associated files

? Don’t know where source is for this.

See also

Distribution

Applix 1616 Utility Disk #1 /bin

Author

Andrew Morton

mrdstat - reports on mrdrivers in memory Utilities Disk One

pipe - adds U NIX pipes as MRD

^ or |
pipe [on] [off] [d]

Description

Pipe is a memory resident driver, to be added to your mrdrivers file on your boot disk
for Version 3. Refer to the Applix Technical Reference Manual. Pipes are built into the
operating system from Version 4.

It is invoked using ̂ for standard output, or | for standard error. It acts as a redirection
operator, taking the output of the file preceding it, and using this as the input of the file
following it. It does this by producing temporary disk files (like MS-DOS, unlike
UNIX.)

UNIX folks should note that the ^ character is historically correct. Since standard error
is normally directed to standard output, you can use the more familiar | in most circum-
stances without any different effect. Most versions floating round have already been
converted so that | is the usual default for standard output (so much for history!) The
pipe in Version 4 uses only |.

on Enable piping

off Disable the pipe mrd

d Debug mode. Lists all expansions made by pipe.

Available within 1616/OS from Version 4 on.

Examples

cat filename ^ wc

produces a count of the number of lines, words and bytes in filename .
dir | more

Displays a directory a page at a time, via the more filter.

Bugs

Associated files

pipe.c, pipe.mrd

See also

Distribution

Applix 1616 Utility Disk #1 /source/mrdrivers

Author

Andrew Morton

pipe - adds UNIX pipes as MRD Utilities Disk One

pr - print files

pr [+page] [-columns] [-h header] [-w width] [-l length] [-bfnpst] [files]

Description

Pr prints the named files to the standard output. If file is -, or if no files are specified,
the standard input is assumed. By default, the listing is separated into pages, each
headed by the page number, a date and time, and the name of the file. Redirect this to
your printer for a formatted printout.

By default, columns are of equal width, separated by at least one space; lines which do
not fit are truncated. If the -s option is used, lines are not truncated and columns are
separated by the | character.

The options below may appear singly or be combined in any order:

+ Page number. Begin printing with page n (default is 1).

- Number of columns. Produce n-column output (default is 1, limit is 10).

-b Backspace correction turned off.

-f Folding of lines to fit the display is to be disabled.

-h Use the next argument as the header to be printed instead of the file name. -h is
the only pr option that requires a space between the option and its argument!

-l Length. Set the length of a page to n lines (default is 66). By default, pages
contain

-n Line number. Provide n-digit line numbering (default for n is 5). The number
occupies the first n+1 character positions of each column of normal output.

-p Pause before beginning each page if the output is directed to a terminal (pr will
ring the bell at the terminal and wait for a carriage return).

-t Print neither the five-line identifying header nor the five-line trailer normally
supplied for each page. Quit printing after the last line of each file without spac-
ing to the end of the page.

-w Width. Set the width of a line to n character positions (default is 72 for equal-
width multi-column output).

Examples

Print file1 and file2 as a three-column listing headed by ‘‘filelist’’:

pr -3h "file list" file1 file2

Write file1 on file2 , expanding tabs to columns 10, 19, 28, 37, ... :

pr -t <file1 >file2

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Michael Huisjes, modified by Jacob P Bunschoten.

Conversion to Applix 1616 by Andrew Morton

pr - print files Utilities Disk One

rawread - read a block device

rawread /device address blocknum [blocknum]

Description

Bypasses the operating system, and calls a block device driver directly to read disks.
This is identical to rawwrite , and looks at its own call name to determine which action
is required (cute trick). Use to rescue destroyed disks.

/device is the disk drive (/f0, /h0, etc.)

address is the location in memory into which the results are to be placed. The
value is assumed to be hexadecimal. Using $6000 to $8000 is often
safe.

block The number of the block, or blocks, to be read.

Examples

rawread /f0 6000 3 4

should read the directory blocks (which are usually blocks 3 and 4) of the disk in drive
/f0, and place the contents in memory at $6000. You can check the results using mrb
6000.

Bugs

Does not accept decimal or binary numbers for address.

Must not be renamed, or it stops! Actually, this could be considered a feature!

Associated files

rawread.c

See also

rawwrite

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

rawread - read a block device Utilities Disk One

rawwrite - write to a block device

rawwrite /device address blocknum [blocknum]

Description

Bypasses the operating system, and calls a block device driver directly to write disks.
This is identical to rawread, and looks at its own call name to determine which action
is required (cute trick).

/device is the disk drive (/f0, /h0, etc.)

address is the location in memory from which the contents are to be taken. It
normally uses 1k per block. The value is assumed to be hexadecimal.
Using $6000 to $8000 is often safe.

block The number of the block, or blocks, to be written.

Examples

rawwrite /f0 6000 3

should write to the directory block (which is usually block 3) of the disk in drive /f0,
and place the contents of memory from $6000 in that block. You can alter memory
using mwb.

Bugs

Does not accept decimal or binary numbers for address.

Can not be renamed, or it stops. Actually, this could be considered a feature!

Associated files

rawwrite.c

See also

rawread

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

rawwrite - write to a block device Utilities Disk One

rmcr - remove carriage returns from file

rmcr infile outfile

Description

Removes carriage returns from ends of lines in file infile , and places the result in
outfile . Use to help fix files with strange CR-LF combinations, by running through
rmcr , then through addcr .

Examples

Bugs

Requires two filenames, rather than accepting redirections.

Associated files

rmcr.c

See also

addcr, ftolower, ftoupper

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

rmcr - remove carriage returns from file Utilities Disk One

roff - text justifier and formatter

roff [+00] [-00] [-s] [-h] [files]

Description

Roff formats text contained in files (standard input by default) for printing on
typewriter-like devices and line printers. The text is interspersed with lines of format
control information, while the output is a printed, paginated document in a user-desig-
nated style. Device independent printing is a truly great idea, provided your particular
printer is supported ... mostly, it isn’t. But you have the source code, so you can change
that! Very powerful, but not precisely friendly.

An argument consisting of a minus (-) is taken to be a file name corresponding to the
standard input. The options, which may appear in any order, but must appear before
the files, are:

+ n Starting line number.

- n End line number.

-h Insert tabs to replace spaces wherever possible.

-s n Stop every n pages. Roff will halt after every n pages (default n=1) to allow
paper loading or changing, and will resume upon receipt of a line-feed or new-
line. When roff halts between pages, an ASCII BELL is sent to the terminal.

Roff uses a large number of two character macro commands, preceded by a . within its
text files to control formatting. An n indicates a number is required. A t indicates text
is to be entered. A c indicates a single character is to be entered. The commands prob-
ably include:

.ad Adjust output lines.

.ar Arabic page numbers (default).

.bl n Blank line in text, paragraph indicator. Insert n blank lines.

.bp +n Break page, begin new page, number it n.

.br Break, stop filling current line. Use between paragraphs.

.cc c Set control character to c, default is . .

.ce n Center following n input text lines.

.de xx Define or redefine macro xx, end at line beginning .. .

.ds Double space, same as .ls 2.

.ef t Even footer becomes t.

.eh t Even header becomes t.

.fi Fill output lines, right justify margin. Default is on.

.fo t Footer title, default none.

.hc c Hyphenation indicator character c Initially usually none.

.he t Header title, default none.

.hx Title lines are suppressed, default 1.

.hy n Hyphenate. If n is 1, hyphenate, if n is 0, don’t.

.ig .. Ignore input until you encounter ..

roff - text justifier and formatter Utilities Disk One

.in n Indent n spaces, normally n is zero

.ix n Next indent size, same as .in, but without break

.li n Literal. Treat next n lines as text.

.ll n Line length, initially 6.5 inches, 65 characters, including indent.

.ls n Output n-1 vertical spaces after each line, default 1.

.m1 n Put n blank lines between top of page and header title.

.m2 n Put n blank lines between header title and start of text.

.m3 n Put n blank lines between end of text and footer.

.m4 n Put n blank lines between footer and bottom of page.

.n1 Add 5 to page offset, number lines in margin from 1 on each page.

.n2 n Add 5 to page offset, number lines on page starting ffrom n.

.na No adjusting of output line, equivalent of .ad =0.

.ne n Begin new page, if n lines won’t fit on present page.

.nf No filling or adjusting of output lines.

.ni +n Line numbers are indented n.

.nn +n Number next n lines, initially 0.

.nx filename Input from next file.

.of t Odd footer becomes t.

.oh t Odd header becomes t.

.pa +n Same as .bp, start new page numbered n.

.pl n Page length, defaults to 11 inches usually, or 66 lines.

.po n Page offset. Preceed lines by n spaces.

.rm n Right margin setting, default 60.

.ro Roman numerals on page numbers.

.sk n Skip n blank pages.

.sp n Space down n lines (except at top of page), default 1.

.ss Single space, same as .ls 1.

.ta Nt Tab settings, left, unless t=R (Right), or t=C (Center). 8 initially (positions 8,
17, 25 ...).

.tc c Tab replacement character, initially a space.

.ti n Temporary indent of n, for next line.

.tl t Print title t.

.tr abcd ... Translate a to b, etc., on output.

.ul n Underline letters and numbers in next n input lines.

Examples

Bugs

roff - text justifier and formatter Utilities Disk One

Associated files

roff.c

See also

cat, cio, more, pr

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

G L Sicherman, with fixes by Tim Maroney, Dave Tutelman. Refer to Kernighan &
Plauger book Software Tools for a description.

Conversion to Applix 1616 by Andrew Morton

roff - text justifier and formatter Utilities Disk One

scc - Z8530 serial preload constant calculator

scc

Description

scc is a utility for working out the preload value for the Z80 SCC (Z8530) serial I/O chip
preload constant (wasn’t that informative - look in the SCC manual).

Examples

Bugs

Associated files

scc.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

scc - Z8530 serial preload constant calculator Utilities Disk One

setload - change load address of files

setload filename address

Description

setload filename address changes the load address field in a file directory entry.
The address must be in hexadecimal.

Examples

Bugs

Associated files

setload.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

setload - change load address of files Utilities Disk One

sort - sort a file

sort [-funbirdcmt ‘x’] [+pos [m.n] [-pos]] [-o outfile] [files]

Description

Sort sorts lines of all the named files together and writes the result on the standard out-
put. The standard input is read if - is used as a file name or no input files are named.
Sort helps you write quick and dirty database programs.

Comparisons are based on one or more sort keys extracted from each line of input. By
default, there is one sort key, the entire input line, and ordering is lexicographic by
bytes in machine collating sequence (ASCII order).

The following options alter the default behaviour:

-c Check that the input file is sorted according to the ordering rules; give no output
unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-o output The argument given is the name of an output file to use instead of the stan-
dard output. This file may be the same as one of the inputs. There may be
optional blanks between -o and output.

The following options override the default ordering rules.

-d Dictionary order: only letters, digits and blanks (spaces and tabs) are significant
in comparisons.

-f Fold lowercase letters into uppercase.

-i Ignore characters outside the ASCII range 32-126 in non-numeric comparisons.

-n An initial numeric string, consisting of optional blanks, optional minus sign, and
zero or more digits with optional decimal point, is sorted by arithmetic value.
The -n option implies the -b option (see below). Note that the -b option is only
effective when restricted sort key specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the requested
ordering rules are applied globally to all sort keys. When attached to a specific sort key
(described below), the specified ordering options override all global ordering options
for that key.

The notation +pos1 -pos2 restricts a sort key to one beginning at pos1 and ending at
pos2. The characters at positions pos1 and pos2 are included in the sort key (provided
that pos2 does not precede pos1). A missing -pos2 means the end of the line.

Specifying pos1 and pos2 involves the notion of a field, a minimal sequence of char-
acters followed by a field separator or a new-line. By default, the first blank (space or
tab) of a sequence of blanks acts as the field separator. All blanks in a sequence of
blanks are considered to be part of the next field; for example, all blanks at the beginn-
ing of a line are considered to be part of the first field. The treatment of field separators
can be altered using the options:

-tx Use x as the field separator character; x is not considered to be part of a field
(although it may be included in a sort key). Each occurrence of x is significant
(e.g., x x delimits an empty field).

sort - sort a file Utilities Disk One

-b Ignore leading blanks when determining the starting and ending positions of a
restricted sort key. If the -b option is specified before the first +pos1 argument, it
will be applied to all +pos1 arguments. Otherwise, the -b flag may be attached
independently to each +pos1 or -pos2 argument (see below).

Pos1 and Pos2 each have the form m.n, optionally followed by one or more of the flags
bdfinr . A starting position specified by +m.n is interpreted to mean the n+1st char-
acter in the m+1st field. A missing .n means .0, indicating the first character of the
m+1st field. If the b flag is in effect n is counted from the first non-blank in the m+1st
field; +m.0b refers to the first non-blank character in the m+1st field.

A last position specified by -m.n is interpreted to mean the nth character (including sep-
arators) after the last character of the mth field. A missing .n means .0, indicating the
last character of the mth field. If the b flag is in effect n is counted from the last leading
blank in the m+1st field; -m.1b refers to the first non-blank in the m+1st field.

When there are multiple sort keys, later keys are compared only after all earlier keys
compare equal. Lines that otherwise compare equal are ordered with all bytes signifi-
cant.

Examples

Sort the contents of infile with the second field as the sort key:

sort +1 -2 infile

Sort, in reverse order, the contents of infile1 and infile2, placing the output in outfile
and using the first character of the second field as the sort key:

sort -r -o outfile +1.0 -1.2 infile1 infile2

Sort, in reverse order, the contents of infile1 and infile 2 using the first non-blank char-
acter of the second field as the sort key:

sort -r +1.0b -1.1b infile1 infile2

Print a file sorted by the numeric third colon-separated field:

sort -t: +2n -3 infile

Print the lines of the already sorted file infile , suppressing all but the first occurrence
of lines having the same third field (the options -um with just one input file make the
choice of a unique representative from a set of equal lines predictable):

sort -um +2 -3 infile

Bugs

The -d option recognizes ASCII characters only.

The -n option only recognizes the English radix character (decimal point) in numeric
comparisons.

The -t option only recognizes a character encoded in one byte as a field separator char-
acter. That is, if you got fancy in defining your fields, it won’t work.

Only handles 20k files. Change line 45 (where it says .. (20 * 1024)), compile it again,
and use chmem to increase the stack space (if required).

Associated files

sort.c

sort - sort a file Utilities Disk One

See also

comm, join, uniq

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Michael Huisjes

Conversion to Applix 1616 by Andrew Morton

sort - sort a file Utilities Disk One

split - split a file into pieces

split [-n] [file [name]]

Description

Split reads file and writes it in n line pieces (default 1000 lines) onto a set of output
files. The name of the first output file is name with aa appended, and so on lexi-
cographically, up to zz (a maximum of 676 files, except I have a suspicion that the real
maximum is 10 files). Name probably cannot be longer than 27 characters. If no output
name is given, xxxx is default.

This splits a file horizontally, and can be of use for limiting file sizes, and for quick and
dirty databases. To split a file vertically, use cut (which I don’t think has been implem-
ented as yet).

If no input file is given, or if - is given instead, then the standard input file is used.

Examples

Bugs

Associated files

split.c

See also

cut

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Michael Huisjes

Conversion to Applix 1616 by Andrew Morton

split - split a file into pieces Utilities Disk One

strings - searches for ASCII in files

strings [-minsize] [files]

Description

strings [-minsize] [files] searches files for ASCII strings. If no files are given,
strings reads from standard input until it finds an EOF character. Normally it prints
out any sequential run of 5 or more sequentially valid ASCII characters. The minimum
run size of ASCII characters may be varied, to look for a longer or shorter run of
ASCII.

Examples

Bugs

Associated files

strings.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

strings - searches for ASCII in files Utilities Disk One

sum - checksum and block count a file

sum file

Description

Sum calculates and prints a 16-bit checksum for the named file, and also prints the
number of blocks in the file. Standard input is used if no file names are given.

Sum is typically used to look for bad spots, or to validate a file communicated over
some transmission line.

Examples

Bugs

Associated files

sum.c

See also

wc

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Martin C Atkins

Conversion to Applix 1616 by Andrew Morton

sum - checksum and block count a file Utilities Disk One

tail - deliver last part of a file

tail [-number] [file]

Description

Tail copies the named file to the standard output beginning at a designated place. If no
file is named, the standard input is used. That is, it lets you easily inspect the end of a
file.

Copying begins at distance -number from the end of the input (if number is null, the
value -10 is assumed). Number is counted in units of lines.

Examples

Bugs

Tail s relative to the end of the file are stored in a buffer, and thus are limited in length.
Thus, be wary of the results when piping output from other commands into tail .

Various kinds of anomalous behaviour may happen with character special files.

Tail can pick up a maximum of 4K bytes of data from the specified file.

Associated files

tail.c

See also

head

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Conversion to Applix 1616 by Andrew Morton

tail - deliver last part of a file Utilities Disk One

tee - pipe fitting

tee [-i] [-a] [file] ...

Description

Tee transcribes the standard input to the standard output and makes copies in the files.
This is handy when you want to view the results of some activity, but also retain a copy
of the results for later editing or printing.

-i ignores interrupts (on the Applix, who knows?)

-a causes the output to be appended to the files rather than overwriting them.

Examples

dir | tee -a filename

This displays the directory, and also puts a copy of the display into the file filename .

Bugs

Associated files

tee.c

See also

pipe.mrd

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Paul Polderman

Conversion to Applix 1616 by Andrew Morton

tee - pipe fitting Utilities Disk One

undelete - recover a recently deleted file

undelete [files ...]

Description

With no arguments, undelete prints a list of deleted files in the specified directory. If
given a filename, or filenames, it recovers those files.

You must run fscheck after recovering a file, to correct the disk bitmap (Caution: on
large hard disks, fscheck takes forever, and may crash without warning.)

Examples

Bugs

You may have problems with fscheck on large hard disks afterwards.

Associated files

undelete.c

See also

find , fscheck, tree

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Andrew Morton

undelete - recover a recently deleted file Utilities Disk One

uniq - compact repeated lines

uniq [-udc [+n] [-n]] [input [output]]

Description

Uniq reads the input file comparing adjacent lines. In the normal case, the second and
succeeding copies of repeated lines are removed; the remainder is written on the output
file. Input and output should always be different. Note that repeated lines must be
adjacent in order to be found. Use sort to ensure that lines that are the same end up
adjacent to each other. This is handy in quick and dirty databases, where you want to
eliminate multiple entries with the same information. It is a pity most mail order places
haven’t discovered the equivalent routine in their databases. Flags are usually mutually
exclusive, as detailed below.

-u just the lines that are not repeated in the original file are output.

-d specifies that one copy of just the repeated lines is to be written. The normal
mode output is the union of the -u and -d mode outputs.

-c supersedes -u and -d and generates an output report in default style but with each
line preceded by a count of the number of times it occurred.

-n skips n initial fields of each line in the comparison. Each field is a string of non-
space, non-tab characters, separated by tabs and spaces from the next field.

+n The first n fields, together with any blanks before each, are ignored. A field is
defined as a string of non-space, non-tab characters separated by tabs and spaces
from its neighbours.

Examples

Bugs

Associated files

uniq.c

See also

comm, cut, diff , sort

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

John Woods

Conversion to Applix 1616 by Andrew Morton

uniq - compact repeated lines Utilities Disk One

wc - word, line, and character count

wc [-lwc] [files]

Description

Wc counts lines, words, and characters in the named files, or in the standard input if no
names appear. It also keeps a total count for all named files. A word is a maximal
string of characters (probably maximum of 256) delimited by spaces, tabs, or new-lines.
Handy if your word processor can’t count!

The options l, w, and c may be used in any combination to specify that a subset of lines,
words, and characters are to be reported. The default is -lwc.

When names are specified on the command line, they will be printed along with the
counts.

Wc counts the number of new-lines to determine the line count. If an ASCII text file
has a final line that is not terminated with a new-line character, the count will be off by
one.

If there are very many characters, words, and/or lines in an input file, the output may be
hard to read. This is because wc reserves a fixed column width for each count. This
probably doesn’t matter on this version.

Examples

Bugs

Associated files

wc.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/unix

Author

Conversion to Applix 1616 by Andrew Morton

wc - word, line, and character count Utilities Disk One

Description

Examples

Bugs

Associated files

.c

See also

Distribution

Applix 1616 Utility Disk #1 /source/sstools

Author

Conversion to Applix 1616 by Andrew Morton

 Utilities Disk One

Summary
addcr infile outfile

ar [-adprtvx] afile [filename] ...

ar [-adprtvx] afile [filename] ...

arc [-]{ amufdxeplvtc } [biswn] [gpassword] archive [filename ...]
at HHMM [command] or
at MMDDHHMM [command]

atrun [-l[logdirectory]] filenames

cal [month] year

cmp [-ls] file1 file2

comm [- [123]] file1 file2

cron [-f crontabfile] [-s sleeptime] [-r rereadtime] [-v] [-d] [-e[dev-
name]]

dd [option=value] ...

df filename [-nnnnn] [-onnnn]

diff file1 file2

dis start address count
dis filename.exec
dis filename.xrel

eroff [+00] [-00] [-s] [-h] [files]

exp arguments

find dirspec filespec

fscopy sourcedir destdir

ftolower < infile > outfile

ftoupper < infile > outfile

gensrec infile > output

gp pattern file

grep [-cfinv] pattern [file ...]

hdbackup /hdrive /fdrive

hdrestore /sourcedrive /destdrive

head [-n] file1 [file2 ...]

load4000 filename

make [-f makefile] [-dinpqrst] [macro=val] [target(s)] [names]

mexec [-v] printf_control_string [args]

more [files ...]

mrdstat

^ or |
pipe [on] [off] [d]

pr [+page] [-columns] [-h header] [-w width] [-l length] [-bfnpst] [files]

Summary Utilities Disk One

rawread /device address blocknum [blocknum]

rawwrite /device address blocknum [blocknum]

rmcr infile outfile

roff [+00] [-00] [-s] [-h] [files]

scc

setload filename address

sort [-funbirdcmt ‘x’] [+pos [m.n] [-pos]] [-o outfile] [files]

split [-n] [file [name]]

strings [-minsize] [files]

sum file

tail [-number] [file]

tee [-i] [-a] [file] ...

undelete [files ...]

uniq [-udc [+n] [-n]] [input [output]]

wc [-lwc] [files]

Summary Utilities Disk One

Table of Contents

Introduction .. 1

addcr - add carriage returns to a file .. 2

ar - archive maintainer .. 3

arc - compress and archive files .. 4

at - run a task at a specified time .. 5

cal - print calendar ... 7

cmp - compare two files ... 8

comm - lines common to two files ... 9

cron - run regular background tasks .. 10

dd - convert, reblock, translate, and copy a (tape) file ... 13

df - dump contents of a disk file .. 15

diff - differential file comparator .. 16

dis - disassembler for 68000 code .. 17

eroff - text justifier and formatter .. 18

exp - evaluate arguments as an expression .. 21

find - find a named file on disk .. 22

fscopy - copy a directory, and all subdirectories ... 23

ftolower - convert input to lower case .. 24

ftoupper - convert input to upper case ... 25

gensrec - output in S-Record form .. 26

gp - fast search a file for a simple pattern .. 27

grep - search a file for a pattern .. 28

hdbackup - backup a hard disk to floppies .. 30

hdrestore - restore contents of a hard disk .. 31

head - display top of file ... 32

load4000 - convert .xrel to .exec .. 33

make - maintain update and regenerate groups of programs 34

 Utilities Disk One

mexec - multiple exec ... 38

more - formats text files for viewing ... 39

mrdstat - reports on mrdrivers in memory ... 40

pipe - adds UNIX pipes as MRD .. 41

pr - print files ..42

rawread - read a block device ... 43

rawwrite - write to a block device ... 44

rmcr - remove carriage returns from file ... 45

roff - text justifier and formatter .. 46

scc - Z8530 serial preload constant calculator ... 49

setload - change load address of files .. 50

sort - sort a file ..51

split - split a file into pieces .. 54

strings - searches for ASCII in files .. 55

sum - checksum and block count a file ... 56

tail - deliver last part of a file .. 57

tee - pipe fitting ... 58

undelete - recover a recently deleted file .. 59

uniq - compact repeated lines .. 60

wc - word, line, and character count .. 61

Summary ... 63

 Utilities Disk One

